• 제목/요약/키워드: Bayes action

검색결과 8건 처리시간 0.022초

Bayes 풍의 RFID Tag 인식 (Bayesian Cognizance of RFID Tags)

  • 박진경;하준;최천원
    • 대한전자공학회논문지TC
    • /
    • 제46권5호
    • /
    • pp.70-77
    • /
    • 2009
  • 하나의 reader와 여러 tag로 구성된 RFID 망에서 tag의 응답 간 충돌을 중재하기 위해 tag가 응답하도록 여러 슬롯을 마련해 주는 프레임화 및 슬롯화된 ALOHA 방식이 소개되었다. 프레임화 및 슬롯화된 ALOHA에서는 tag 인식의 효율이 극대화되기 위해 프레임 별 슬롯의 수가 최적화되어야 한다. 이러한 최적화는 tag의 수를 필요로 하나 reader는 tag의 수를 알기 힘들다. 본 논문에서는 별도로 tag의 수를 추정하지 않고 슬롯의 수에 대해 직접 Bayes action을 취하는 프레임화 및 슬롯화된 ALOHA에 기초한 tag 인식 방식을 제안한다. 구체적으로 Bayes action은 tag의 수가 갖는 사전 분포, 어떤 tag도 응답하지 않은 슬롯의 수에 대한 관찰값, 그리고 인식률을 반영한 손실 함수를 결합한 결정 문제를 풀어 구한다. 또한 tag의 수가 갖는 사전 분포의 진화를 통해 각 프레임에서 이러한 Bayes action을 지원한다. 모의 실험 결과로부터 진화하는 사전 분포와 Bayes action의 쌍은 robust 방식을 이루어 tag의 수의 참값과 초기 추측값의 큰 괴리에도 불구하고 일정 수준의 인식률을 얻을 수 있음을 관찰한다. 또한 제안하는 방식은 tag의 수에 대한 고전적인 추정값을 사용하는 방식에 비해 높은 인식 완료 확률을 얻을 수 있음을 확인한다.

Optimal Convergence Rate of Empirical Bayes Tests for Uniform Distributions

  • Liang, Ta-Chen
    • Journal of the Korean Statistical Society
    • /
    • 제31권1호
    • /
    • pp.33-43
    • /
    • 2002
  • The empirical Bayes linear loss two-action problem is studied. An empirical Bayes test $\delta$$_{n}$ $^{*}$ is proposed. It is shown that $\delta$$_{n}$ $^{*}$ is asymptotically optimal in the sense that its regret converges to zero at a rate $n^{-1}$ over a class of priors and the rate $n^{-1}$ is the optimal rate of convergence of empirical Bayes tests.sts.

MONOTONE EMPIRICAL BAYES TESTS FOR SOME DISCRETE NONEXPONENTIAL FAMILIES

  • Liang, Tachen
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.153-165
    • /
    • 2007
  • This paper deals with the empirical Bayes two-action problem of testing $H_0\;:\;{\theta}{\leq}{\theta}_0$: versus $H_1\;:\;{\theta}>{\theta}_0$ using a linear error loss for some discrete nonexponential families having probability function either $$f_1(x{\mid}{\theta})=(x{\alpha}+1-{\theta}){\theta}^x\prod\limits_{j=0}^x\;(j{\alpha}+1)$$ or $$f_2(x{\mid}{\theta})=[{\theta}\prod\limits_{j=0}^{x-1}(j{\alpha}+1-{\theta})]/[\prod\limits_{j=0}^x\;(j{\alpha}+1)]$$. Two empirical Bayes tests ${\delta}_n^*\;and\;{\delta}_n^{**}$ are constructed. We have shown that both ${\delta}_n^*\;and\;{\delta}_n^{**}$ are asymptotically optimal, and their regrets converge to zero at an exponential decay rate O(exp(-cn)) for some c>0, where n is the number of historical data available when the present decision problem is considered.

Intelligent Traffic Prediction by Multi-sensor Fusion using Multi-threaded Machine Learning

  • Aung, Swe Sw;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권6호
    • /
    • pp.430-439
    • /
    • 2016
  • Estimation and analysis of traffic jams plays a vital role in an intelligent transportation system and advances safety in the transportation system as well as mobility and optimization of environmental impact. For these reasons, many researchers currently mainly focus on the brilliant machine learning-based prediction approaches for traffic prediction systems. This paper primarily addresses the analysis and comparison of prediction accuracy between two machine learning algorithms: Naïve Bayes and K-Nearest Neighbor (K-NN). Based on the fact that optimized estimation accuracy of these methods mainly depends on a large amount of recounted data and that they require much time to compute the same function heuristically for each action, we propose an approach that applies multi-threading to these heuristic methods. It is obvious that the greater the amount of historical data, the more processing time is necessary. For a real-time system, operational response time is vital, and the proposed system also focuses on the time complexity cost as well as computational complexity. It is experimentally confirmed that K-NN does much better than Naïve Bayes, not only in prediction accuracy but also in processing time. Multi-threading-based K-NN could compute four times faster than classical K-NN, whereas multi-threading-based Naïve Bayes could process only twice as fast as classical Bayes.

EMPIRICAL BAYES TESTING FOR MEAN LIFE TIME OF RAYLEIGH DISTRIBUTION

  • Liang, TaChen
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.1-15
    • /
    • 2007
  • Consider a Rayleigh distribution with $$pdf\;p(x/{\theta})\;=\;2x{\theta}^{-1}\;{\exp}\;({-x^2}/{\theta})$$ and mean lifetime ${\mu}\;=\;\sqrt{\pi\theta}/2$. We study the two-action problem of testing the hypotheses $H_{0}\;:\;{\mu}{\leq}{\mu}_{0}$ against $H_{1}\;:\;{\mu}\;>\;{\mu}_{0}$ using a linear error loss of ${\mid}{\mu}\;-\;{\mu}_{0}{\mid}$ via the empirical Bayes approach. We construct a monotone empirical Bayes test ${\delta}^{*}_{n}$ and study its associated asymptotic optimality. It is shown that the regret of ${\delta}^{*}_{n}$ converges to zero at a rate $\frac{{\ln}^{2}n}{n}$, where n is the number of past data available when the present testing problem is considered.

Empirical Bayes Problem With Random Sample Size Components

  • Jung, Inha
    • Journal of the Korean Statistical Society
    • /
    • 제20권1호
    • /
    • pp.67-76
    • /
    • 1991
  • The empirical Bayes version involves ″independent″ repetitions(a sequence) of the component decision problem. With the varying sample size possible, these are not identical components. However, we impose the usual assumption that the parameters sequence $\theta$=($\theta$$_1$, $\theta$$_2$, …) consists of independent G-distributed parameters where G is unknown. We assume that G $\in$ g, a known family of distributions. The sample size $N_i$ and the decisin rule $d_i$ for component i of the sequence are determined in an evolutionary way. The sample size $N_1$ and the decision rule $d_1$$\in$ $D_{N1}$ used in the first component are fixed and chosen in advance. The sample size $N_2$and the decision rule $d_2$ are functions of *see full text($\underline{X}^1$equation omitted), the observations in the first component. In general, $N_i$ is an integer-valued function of *see full text(equation omitted) and, given $N_i$, $d_i$ is a $D_{Ni}$/-valued function of *see full text(equation omitted). The action chosen in the i-th component is *(equation omitted) which hides the display of dependence on *(equation omitted). We construct an empirical Bayes decision rule for estimating normal mean and show that it is asymptotically optimal.

  • PDF

실제 실내 환경에서 이동로봇의 위상학적 위치 추정 (Topological Localization of Mobile Robots in Real Indoor Environment)

  • 박영빈;서일홍;최병욱
    • 로봇학회논문지
    • /
    • 제4권1호
    • /
    • pp.25-33
    • /
    • 2009
  • One of the main problems of topological localization in a real indoor environment is variations in the environment caused by dynamic objects and changes in illumination. Another problem arises from the sense of topological localization itself. Thus, a robot must be able to recognize observations at slightly different positions and angles within a certain topological location as identical in terms of topological localization. In this paper, a possible solution to these problems is addressed in the domain of global topological localization for mobile robots, in which environments are represented by their visual appearance. Our approach is formulated on the basis of a probabilistic model called the Bayes filter. Here, marginalization of dynamics in the environment, marginalization of viewpoint changes in a topological location, and fusion of multiple visual features are employed to measure observations reliably, and action-based view transition model and action-associated topological map are used to predict the next state. We performed experiments to demonstrate the validity of our proposed approach among several standard approaches in the field of topological localization. The results clearly demonstrated the value of our approach.

  • PDF

BAYESIAN APPROACH TO MEAN TIME BETWEEN FAILURE USING THE MODULATED POWER LAW PROCESS

  • Na, Myung-Hwa;Kim, Moon-Ju;Ma, Lin
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제10권2호
    • /
    • pp.41-47
    • /
    • 2006
  • The Renewal process and the Non-homogeneous Poisson process (NHPP) process are probably the most popular models for describing the failure pattern of repairable systems. But both these models are based on too restrictive assumptions on the effect of the repair action. For these reasons, several authors have recently proposed point process models which incorporate both renewal type behavior and time trend. One of these models is the Modulated Power Law Process (MPLP). The Modulated Power Law Process is a suitable model for describing the failure pattern of repairable systems when both renewal-type behavior and time trend are present. In this paper we propose Bayes estimation of the next failure time after the system has experienced some failures, that is, Mean Time Between Failure for the MPLP model. Numerical examples illustrate the estimation procedure.

  • PDF