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Optimal Convergence Rate of Empirical Bayes Tests
for Uniform Distributions

TaChen Liang!

ABSTRACT

The empirical Bayes linear loss two-action problem is studied. An empir-
ical Bayes test 4, is proposed. It is shown that & is asymptotically optimal
in the sense that its regret converges to zero at a rate n™* over a class of
priors and the rate n™! is the optimal rate of convergence of empirical Bayes
tests.

Keywords: Asymptotically optimal, empirical Bayes, minimum regret, optimal
rate of convergence.

1. Introduction

The empirical Bayes approach in statistical decision theory is appropriate
when one is confronted repeatedly and independently with the same decision
problem. In such instances, it is reascnable to formulate the component problem
in the sequence as a Bayes decision problem with respect to an unknown prior
distribution on the parameter space, and then use the accumulated past data to
improve the decision procedure at each stage. Since Robbins (1956), empirical
Bayes procedures have been extensively studied. Many such empirical Bayes
procedures have been shown to be asymptotically optimal in the sense that the
rigsk for the (n+1)-st decision problem converges to the optimal Bayes risk which
would have been obtained if the prior distribution was fully known and the Bayes
procedure with respect to this prior distribution was used.

The performance of empirical Bayes procedures in practical applications clear-
ly depends on the convergence rates with which the risks of successive decision
problems approach the optimal Bayes risk. Singh (1979) and Singh and Wei
(1992) conjectured that the rate n™! is the best possible rate for empirical Bayes
procedures dealing with Lebesgue densities. Recently, Karunamuni (1996, 1999)
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raised the following questions: In terms of convergence, what are the best era-
pirical Bayes procedures? What are the optimal rate of convergence? In order
to answer these questions, one approach is to find a sharper lower bound for
the minimax regret of the empirical Bayes procedures. The importance of such
minimax lower bound is that they address the nature of the inherent difficulty
of the empirical Bayes decision problem and explain how well can the empirical
Bayes decision problem be solved by any empirical Bayes procedure. Karuna-
muni (1996, 1999) attempted to derive asymptotic minimax lower bounds for the
regrets of empirical Bayes tests for normal, exponential and uniform distribu-
tions. He claimed having established the optimal rate of convergence for each of
the three distributions. However, more studies are needed for finding the optimal
rates of convergence.

In this paper, our purpose is to establish the optimal rate of convergence of
empirical Bayes tests for uniform distributions. The paper is organized in the
following way. The concerned decision problem is introduced in Section 2. A
Bayes test is derived. We construct an empirical Bayes test d; in Section 3. It
is shown that the regret of 8} converges to zero at the rate n™! over a class G
of priors. We also establish a lower bound with rate n~! for the minimax regrat
of empirical Bayes tests in Section 4. Therefore, we conclude that the n~! is the
optimal rate of convergence of empirical Bayes tests over the class G.

2. The Decision Problem and a Bayes Test

Let (X, ©) be a random vector, where © is a positive random variable, fol-
lowing an unknown prior distribution G and X, given © = 6, has a uniform
distribution with pdf f(z|6) = H‘II[O,G] (z). Thus, X has a marginal pdf fg(z) =
[ 671dG(6). Let 6 be a known positive value. Consider the problem of testing
the hypotheses Hy : 6 < g against H; : § > 6y based on an observation of X.
Let 4,7 = 0,1, denote the action deciding in favor of H;. For the parameter 8, the
loss of taking action 1 is

£(6,7) = i(6o — 6)1(60 — 6) + (1 —4)(8 — 60)1(6 - 6o), (2.1)

where I(z) = 1(0) if z > 0(z < 0).

Let x be the sample space of the random variable X. A test § is defined to be
a mapping from x into the interval [0, 1] so that 6(z) = P{accepting H;|X = z},
the probability of accepting H; given X = z being observed. Let R(G, d) denote
the Bayes risk of a test é when G is the true prior distribution. Suppose that
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fooo 6dG(6) < oo. Then, by Fubini’s theorem, a straightforward computation leads
to
x
R(G,5) = / 5(z)He (z)dz + Ce, (2.2)
0

where

Ce = /(9 — 00)1(0 — 00)dG(0), Ho(z) = (60 — ) fa(z) + Folz) -1 (2.3)

and F¢ is the marginal cumulative distribution of X. Thus, a Bayes test d¢g, which
minimizes the Bayes risk among all tests is clearly given by : For each z > 0,

6c(x):{ 1 if Hg<0, 2.4)

0 otherwise.

The minimum Bayes risk of the decision problem is

R(G, 6¢) = /0 ” bo(2)H(z)dz + Co. (2.5)

Note that as z > 6y, Hg(z) < 0. Thus, ég(z) = 1 for z > 6;. Also, Hg)(ac) =
(6o — a:)fg)(a:) < 0. That is, Hg(z) is nonincreasing in z for z in (0,6p). Let
A ={0<z<8y|Hg(z) >0}. Define ag = supA if A # ¢, and 0 otherwise.
Note that Hg(z) > 0 for z < ag and Hg(z) < 0 for x > ag. Therefore, the
Bayes test d¢ can be expressed as :

1 ifz > agG,

d(e) = 0 otherwise;

1 if (2> 6y) or (0 <z < and Hg(z) <0),
0 otherwise.

(2.6)

3. Empiriczl Bayes Testing

3.1. Empirical Bayes framework

Since the prior distribution G is not known, it is impossible to implement
the Bayes test dg for the underlying testing problem. When a sequence of past
data is available, this testing problem has been studied via the empirical Bayes
approach by Gupta anc Hsiao (1983), Van Houwelingen (1987), Liang (1990)
and Karunamuni (1999), respectively. In the empirical Bayes framework, we let
(Xi,0;), 1 = 1,2,... be 1id copies of (X,®), where X;, 1 = 1,2... are observable,
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but ©;, i = 1,2... are not observable. At the current stage n + 1, let 8,41 be a
realization of the random variable ©,,11. We have to make a decision for testing
HP 0,00 < 0 against HPM 2 0,41 > 6y with the loss 1(fn41,1) of (2.1) based
on the present observation X, 1; = = and the past data X (n) = (Xi, ..., Xn).

An empirical Bayes test d, is a test on Xp41 = z and X(n) such that
dn(z, X (n)) = dn(z) is the probability of accepting H’”’1 Given X(n), the con-
ditional Bayes risk of 4, is R(G,d0,|X(n f& z)dr + Cg, and ths
(unconditional) Bayes risk of é, is R(G, (5 = [ E,[ ]HG (z)dz + Cg, where
the expectation E, is taken with respect to the probability measure generated
by X(n).

Since R(G, é¢) is the minimum Bayes risk, R(G, §,|X (n)) — R(G, é¢) > 0 for
all X(n) and for all n. Thus, R(G, d,)— R(G,ds) > 0 for all n. This nonnegative
regret R(G,d,) — R(G,d¢) is used as a measure of performance of the empirical
Bayes test d,. An empirical Bayes test ¢, is said to be asymptotically optimal,
relative to the prior distribution G, at a rate of convergence ¢, if R(G,d,) —
R(G,dg) = O(e,) where {e,} is a sequence of decreasing, positive numbers such
that lim ¢, =0.

n—o00

3.2. Construction of an empirical Bayes test

We consider a kernel function K satisfying the following K- conditions- [K1]
Support of K C [0,1]. [K2] |K(z)] < ko for all z. [K3] fo z)dr = 1. [K4]
fol o K(z)dr =0,0 =1,2,...,r

Motivated by the form (2.6), for constructing empirical Bayes tests, we need
to have estimates for the function Hg(z) = (6y — z) fe(z) + Fg(z) — 1. For each
n and z > 0, define

1 < X;—z 1O
i) = 55 Sk (2 ),Fn(so:;;I(x—X)

Hp(z) = (6o — 2) fn(z) + Fu(z) — 1, (3.1)

where b is a positive value. By mimicking the form (2.6) of the Bayes test dg,
we propose an empirical Bayes test §;, as follows :

n(z)=1 if ({(z>6) or (0 <z <y and Hp(z) <0)); and 0 otherwise.
(3.2)
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The Bayes risk of the empirical Bayes test d;, is
R(G,6%) = / Eal6t (2)]Ho(2)dz + Co. (3.3)

3.3. Asymptotic optimality of d;

Let G be the class of priors G for which the following conditions hold :
[G1] [;70dG(8) < o0, [G2] 0 < ag < by, [G3] fo(z) is a polynomial of degree s
for z in (0,6 + m) for some m > 0 where 1 < s <, and [G4] f(Gl)(SL’) < —-By<0
in a neighborhood (ag — ¢, ag +c¢). Without loss of generality, it is assumed that
¢ > 0 is small enough so that ag — ¢ > 0 and ag + ¢ < 8.

From (2.5)-(2.6) and (3.2)-(3.3), the regret of the empirical Bayes test 6}, can
be written as :

R(G7 6:1) - R(Ga 6G)
_ / " Py {Ha(z) < 0} Hola)dz + [ By {Ha(z) > 0} [~ Heldz (3.4)
0

aG

= /OaG—an {Hn(z) < 0} Hg(z)dz +/aci P {Hy(2) < 0} Hg(z)dz

ag+c bo
+ / P, {Hp(z) > 0} [-Hg(z)]dz +/ P, {Hy(z) > 0} [-Hg(z)]dx

G ag+c

=L+, + 111, +iV,.

Let Bg = min{’H(Gl)(ac)l lag — z| < c}. Thus, for each G in G, Bg > [6o —
(ag + ¢)]Bo > 0. Let b be a fixed positive value such that 0 < b < m. Let

1 2 -1
¢ = 21 {Zﬁgb_lkgfg(ac - C) -+ 5 + g(@ob—lko + 1)HG((ZG - C)J ,

-1 2p—-11.2 1 2 -1 -
cg =277 120507k falag) + 3 + 5(901) ko + 1) |Hglag + ©)| .

Lemma 3.1. For each prior distribution G in G, the following inequalities hold:

202k3 ag
nbHg(ag —¢)  anHg(ag — c)

(a) I, < (b) I, < (2nBgc1)™!

202k? B
nblHg(ag +c)| * 2n|Hg(ag +c)|’

(c) III, < (2nBgec)™t (d) IV, <
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The proof of Lemma 3.1 is provided in the Appendix. The following theorem
is the main result of the paper, which is a direct consequence of (3.4) and Lemma,
3.1.

Theorem 3.1. Let 8 be the empirical Bayes test constructed through (3.1)-
(3.2). Then for each prior distribution G in G, the empirical Bayes test & is
asymptotically optimal in the sense that

R(G, ;) — R(G,é¢)

293k§< 1 N 1 )+i( aG + 6o )
- nb Hg(ag — C) |HG(GG + C)] 2n \ Hglag — c) IHG(G'G + C)l

L 1 (11
2nfg \a1 ¢

= O(n™Y).

4. A Lower Bound of Minimax Regret

Consider two prior distributions G; and G2 in G such that 0 < ag, <
ag, < 6. Their corresponding marginal densities are fg, and fg,, respec-
tively. The Hellinger distance between fg, and fg, is defined as H(fg,, fa,) =
([ (@) - F2(@)]de} /2. 1t is known that H is bounded above by V2. A
convenient computational formula is H2(fg,, fa,) = 2 — 2 [[fa, (z) fa, (z)]/?dz.
Interested readers are referred to Chen (1997) and the references cited there
for more recent developments relating to the Hellinger distance. The following
lemma can be obtained by following a discussion analogous to Theorem 2.1 of
Liang (2000).

Lemma 4.1. Let G; and G be two prior distributions in G such that 0 < ag, <

ag, < 6o and H(fc,, fc,) < \/% Let C be the class of all empirical Bayes tests
0n- Then,

inf sup[R(G, 6,) — R(G,6¢)] > d(ac, — ag,)?,
n€eC Qe

for some positive value d.

Consider a prior distribution G with density g(8) = A—,’;—gB(M -0),0<0< M.
Then, fo(z) = 3(M — 2)°M 3 Fg(z) =1 — (M — 2)3M~3 for 0 < = < M. For
M/3 < 6y < M,ac = (36p — M) /2. Now we choose prior G; and G3 as follows:
G, is with M = 1, Gy is with M = 1 4+ n~/2. Also, let §; = % Then, ag, =
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(360 — 1)/2,a6, = [360 — (1 + n~Y?)]/2,a¢, — ag, = 27'n"Y/2 fg,(2) = 3(1 -
2)2,0<z<1; fa,(z) =31 +n V2 —2)/(1+n"1/?)3 0<z<1+n"V2
Jo[f1 (@) foy (@)]1/2dz = (1 + 3n71/2%) /(1 + n~1/2)3/2, Thus,

2147722 — 2430717 071+ OTR)
(1+n-1/2)3/2 o (14+n-1/2)3/2 = no

Hz(qusz) =

Therefore, H(fa,, fa,) < \/g. Note that G and G5 are in G. Then, by Lemma
4.1, we conclude the follcwing theorem.

Theorem 4.1. é_lmz sup[R(G, 8,)—R(G,8g)] > d*n~! for some positive constant
n€l Geg
d*.

5. Concluding Remarks

The performance of an empirical Bayes procedure is often evaluated by its as-
sociated rate of convergence. For discrete exponential families, Liang (1988, 1999)
has established the exponential type convergence rate exp(—nc),c > 0, for the
two-action problem. Singh (1979) and Singh and Wei (1992) conjectured that the
rate n~! is the best possible rate of convergence for empirical Bayes procedures
dealing with Lebesgue densities. Recently, Karunamuni (1996, 1999) attempted
to find optimal rate of convergence for empirical Bayes tests dealing with normal,
exponential and uniform distributions. However, more further studies are needed
for the claimed optimal rates of convergence.

In this paper, we study empirical Rayes testing for uniform distributions and
investigate the performance of an empirical Bayes test J,, over a class G of prior
distributions. Theorem 3.1 states that for any prior G in G, 4}, is asymptotically
optimal, and its regret converges to zero at a rate n~!. The lower bound of
minimax regret of empirical Bayes tests given in Theorem 4.1 explains that no
empirical Bayes test has regret that converges to zero faster than the rate n~!
over the class G. Combining the two results, we may conclude that the rate n~lis
the optimal rate of convergence over the class G of priors and 4y, is an optimal
empirical Bayes test in the sense that it achieves the optimal rate of convergence

over the class G.
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6. Appendix

In the following, the analysis is made based on the assumption that G is in
G. From (3.1),

Hy,(z) = %ZV(Xj,x,b), (A.1)
j=1

where V(Xj,z,0) = (6o — 2)b71K (i{'biz-) +I{z — X;)— 1,7 = 1,...,n, are iid
random variables, with
Xi—xz
K[|Z2 =
( b )

|V(X;,z,b)| < |6 —z|b7? +1—I(z— Xj) < |06 — x| b7 ko + 1.

Thus,

By Taylor series expansion, for 0 < z < fy, we have

Eb K (M)
n b

:/IK(t)fG(x—ktb)dt
0
1 T 4 r+1
- [ xw [fam+Zfé’)<z)(3if+fg“’<x*)((7“’5—), dt=fole). (A
=0 ’

In (A.3), the last equality is obtained by [K3]-[K4] and by noting that fg +1) (z*) =
0 since fe(z) is a polynomial of degree s with s < r for z in (0,8p+m). According
to (A.3), we have

E,V(X,,z,b) = Hg(z) and E,Hy(z) = Hg(z). (A.2)

Also, for z < z < 6y,

Xj—x
b

Var(V(X;,2,b)) < 2636~V ar (K ( )) +2Var(I(z — X))

Az ””)] +2F5()[1 - Fol(o)] (A5)

< 20207 k2 fo(z) + 2Fq(x)[1 — Fa(z)),

< 202b7%E, [Kz (

and therefore, from (A.1),

Var(Hp(z)) < 20567 k5 fa(z)n™' + 2Fa(z)[1 — Fe(z)ln™!.  (A.6)
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Proof of Lemma 3.1(a)
For z in (0,ag — ¢), Hg(z) > 0. By Markov inequality and from (A.4)-(A.6),
we have

P, {Hn(z) < 0}
= Py {Ha(z) - Hol0) < ~Ho(@)} < Vor(Ha(@))/BS(@)  (AT)
< 20207 k2 fo(z)n ™ + 2F6 ()1 — F(z)n™t.

Substituting (A.7) into I, and noting that Hg(z) > Hglag—c) > 0for 0 <z <
ag — ¢ since Hg(z) is decreasing in z for z in (0, 6p), it follows that

46 =¢ 202h~ 1k fo(z)nt 26 =¢ 9Fg(z)[l — Fg(z)n~!
I, < / Sha dx + / dz
0 He(z) 0 Hg(z)
293](:(2) ag
~ nbHg(ag —¢) 2nHglag —c)’

Proof of Lemma 3.1(b)
For z in (ag — c,ag), by (A.2), (A.5) and Bernstein inequality,

P, {H,(z) < 0}
= P, {Ha(2) — Holz) < —Hg()}

n HZ(z)
S exp {“5 Var(V(X1.z,b) + 26(901:01; T¥1)
< exp {—ﬁ (x) }
= 2 20%k2b~1 fo(z) + 2Fg (2)[1 — Fo(@)] + 2(0okeb™ + 1) Hg ()/3

Hc(m)/?’}

< exp HG( z)
- 2 292k2b lfglag —c) + 5 L+ 2(8pkod~! + 1)Hg(ag —¢)/3
= exp {—nclHG(w)} , (A.8)

where c; is given in Subsection 3.3.
Replacing (A.8) into II,, we obtain

oG
I, < / exp(—neci H(z))Hg (z)dz
ag—c¢

< 2}5 / :Cicexp(—nclHé(x))Hg(x) [—H(G”(z)] dr
1
~ 2nfeer
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The proof of Lemma 3.1 (c) and (d) are similar to that of Lemma 3.1 (b) and
(a), respectively. Hence, the details are omitted.
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