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ABSTRACT

The empirical Bayes version involves “independent” repetitions(a sequence) of the compo-
nent decision problem. With the varying sample size possible, these are not identical compone-
nts. However, we impose the usual assumption that the parameters sequence 8 = (8, 8z, =+ )
consists of independent G-distributed parameters where G is unknown. We assume that
G € g, a known family of distributions. The sample size N; and the decisin rule d: for
component i of the sequence are determined in an evolutionary way. The sample size N,
and the decision rule d; € Dy, used in the first component are fixed and chosen in advance.
The sample size N; and the decision rule d: are functions of X' = (X;;, - ,Xuy), the ob-
servations in the first component.

In general, N; is an integer-valued funtion of (X', X% --,X") and, given Nj, d; is a
Dy-valued funtion of (X%, - ,X"). The action chosen in the i-th component is d:{(X") which
hides the display of dependence on (X', -+, X*').

We construct an empirical Bayes decision rule for estimating normal mean and show that
it is asymptotically optimal.

1. Introduction

In the usual empirical Bayes decision problem as was introduced by Robbins(1955, 1966),
the component problems are i.i.d. @ we are given a stochastic process(8;, X.), (8; Xz), -,
of i.i.d. random vectors with the interpretation that, at the /th component problem, an observa-
tion X; has a distribution P, given the prameter 6;=8 and 6., 0., *** are i.i.d. with a fixed but
unknown prior distribution G in a family of distributions §. O’Bryan(1972, 1976) introduced
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the empirical Bayes decision prolem with non-i.i.d. components by allowing unequal nonrandom
sample sizes in the component problems. Laippala(1985), whose work is motivated by O’ Bryan
(1976), introduced an empirical Bayes problem with nonidentical components with cost for obser-
vations and random “floating” sample sizes for the components. In Laippala(1985), “optimal”
sample size is not optimal among the class of all fixed sample sizes and the proof of Theorem
1 claiming the convergence of the “floating” sample sizes to his “optimal” sample size neglect
the boundary set on which the convergence may fail.

Most of the empirical Bayes work involves identical components with the exception of the
nonrandom sample size work of O’Bryan and Laippala. Karunamuni(1985, 1988) and Gilliland
and Karunamuni(1988) consider the possiblity of varying stochastic sample sizes. Gilliland and
Karunamuni(1988) develop the theory of finite state problems. Karunamuni(1985, 1988) studies
an empirical Bayes problem with a sequentical component. He dose not treat the optimal fixed
sample size problem.

In the paper we consider the empirical Bayes decision problem where the component problem
includes a constant cost per observation and the option to choose in advance the total number
of observations. The empirical Bayes decision approach with our component permits data accumu-
lated over past component problems to be used in selecting both the sample size and the decision
rule to be used in the current component problem. The generality introduced by allowing sample
sizes that are determined stochastically makes the result more useful in applications where,
typically, the choice of sample size is an option based on past data.

In section 2, a statistical decision problem with cost for observations is considered. Optimal
fixed sample size is obtained. Estimation of the normal mean is presented as an example. In
section 3, we develop an empirical Bayes decision problem with random sample size component.
Asymptotic optimality of the empirical Bayes procedure is defined for our case. It is shown
that asymptotic optimality imlpies the convergence of the sample sizes to the optimal fixed sample
size. In section 4, under the squared error loss, we construct an asymptotic optimal empirical
Bayes estimate of the normal mean with random sample size components. We assume that the
variance of the conditional distribution is unknown. The class g is restricted to the conjugate
family, family of normal priors.

2. A statistical decision problem with cost for observations

Consider a statistical decision problem with a parameter space ®, an action space =4, a non-
negative loss funtion L( -, * ) on @ X 4, unknown prior distribution G on © and a cost ¢ > 0
per observation. Let X;, X, +** be observations which are independently and identically distriduted
with a distribution P, given 8, taking values in a set &, the observation space. Let D, be the
set of all decision funtions d @ X"—>=% where O is the observation space for the vector X=( X, -
»X.). When 6 is the parameter and a decision rule d & D, is used, the decision loss plus
cost for observing X=(X,, - ,X,) is

L, dX))+en

, where we assume that L is integrable for all 6, » and d € D,.

Let R, denote the risk and Bayes risk of the decision rule d € D,, i.e.,
R.(8, )= [wL(8, d () dP, (x) (2.1
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R.(G, d)= [ R.8, d) dG(®) (2.2)

and let 7, denote the risk and Bayes risk of the decision rule d € D, including cost for observa-
tions. Then

7.(0, d)=R,(8, d)+cn (2.3)
and

7.(G, d)=R.G, d)+cn (2.4)

We define the minimum Bayes risk and the minimum Bayes risk plus cost in the usual way.
We assume for each prior G and each n=1,2, - that a Bayes rule dé € D, exists. Thus,

inf R.(G, d)=R.(G, d&) (2.5)
aen,

Let
R.(G)=R.(G, d®

and

7(G) =R,(G) +cn. (2.6

Since R.(G) is nonincreasing in #, a minimizer of 7.(G) exists among the integers 1, 2, - .
We will denote a specified minimizer as #*=#"(G) and refer to it as an optimal fixed sample
size. Therefore, 7(G)=7.*(G) is the minimum Bayes risk in the component across all the possi-
ble sample sizes and the corresponding class of decision rules,i.e.,

7(G) =7, (G) =min{min{r.(G, d) : d D} : n=1, 2, -} 2.7

Moreover, note that R.+(G)+cn* <R,(G)+c¢< oo so that
n* < (R(G)+c)/c < w. For some components, R,(G) is a bounded funtion of G € 4.

Example 2.1(Estimation). Let X;, Xz, - ,X, be i.i.d. N(0, A) given 6 and let 8 have
prior distrbution G=N(yu, V). Assume A is known. Let @=A=(~w, ), L(8, a)=(8—
a) for (8, a) € ©X4, and let ¢ > 0 denote the constant cost per observation. Then a Bayes

decision function for estimating © based on observation X =(X,, - ,X.) is
. A —
=TT +{1- n .
ds(X)=( AtnV ) ut+(1 Atny )X (2.8
and
AV
7.(G)=( Atny ) +cn. (2.9

The funtion AV/(A+nV)+cn is a convex function of n € (—A/V, ) with a minimum at
n=C(A4/c)”*—A/V. Therefore, we can define an optimal fixed sample size n* as the positive
integer minimizer of (2.9), which is related to n by

1 ifn<1
n*=n"4, V= {n ifn e {1, 2, -} (2.10)
(] or [n1+ 1, otherwise,

where [ ] denotes the greatest integer funtion.
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3. An empirical Bayes decision problem with
random sample size components

When a statistical decision problem occurs repeatedly and independently with the same unknown
prior G, one can apply an empirical Bayes approach where G is estimated using data collected
from previous repititions and Bayes rule with respect to the estimated G is used in the current
component problem. The empirical Bayes decison approach with our component permits data
accumulated over past component problems to be used in selecting both the sample size and
the decision rule to be used in the current component problem. Choice of a sample size is an
option and is based on past data. We impose the usual assumption that the parameter sequence(8,,
B2, --- ) consists of independent G-distributed parameters, where G is an unknown element of
the known class of distributions &.

The sample size N; and the decision rule d: for the components are determined in an evolutionary
way. The sample size N; and the decision rule d; € Dy used in the first component are given
nonrandom choices.

The sample size N; and the decision rule . are funtions of X'=(Xy, -** ,Xn,), the observa-
tions in the first component.

The sample size N; and the decision rule d; are funtions of (X', X*). In general N; is an
integer-valued funtion of (X', X%, -+ X*) and, given Ni, d; is a Dx-valued function of (X',
X2, - X,

Let N=(Ni, Nz, -) and d=(d;, dz -+ ). We will be concerned with the risk behavior of
empirical Bayes procedures(N, d). (Here and henceforth, the term risk will refer to the expected
loss plus cost for observations.) The Bayes risk for the decision about 6; is

Er,, (G, d)=ERu(G, d)+cEN, (3.1)

where E denotes the expectation over the earlier observations X', X%, -, X",

Definition 3.1 If the empirical Bayes procedure (N, g) possesses the property;
lim Erw (G d)=7r(G) for all G € g, (3.2)

we say it is asymptotically optimal. This means that in the limit, the empirical Bayes procedure
has the best possible risk behavior, i.e, achives minimum Bayes risk.

Goal of the empirical Bayes rules is achiving asymptotic optimality. All of our results concern
parametric families of priors, G=1{G. | @ € Q} where Q is a specified subset of a finite-dimen-
sional Euclidean space R’.

We will identify G by ® and replace G accordingly in formulas for risk, etc. Also, we will
use the empirical Bayes approach wherein the prior © is estimated, say by &, and 2=#n*( &)
and ds € Dj are used in defining the empirical Bayes procedure. Note that we have dropped
the superscript on d.. The following table shows how the empirical Bayes procedure evolves
using estimates at @o arbitrary, @=o(X"), ®.=0X", X3, @&:=&:X", X% X%, . The 6.,
0z, 0; --- are i.i.d. G..

Table 3.1. Empirical Bayes Procedure with Stochastically determined Sample Size
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Para-  Sample Decision Observa- Estimated
Stage meter Size Rule tion Prior Risk
1 0 N:=n" (&) d,=dz, X] (01(2_(1) E{L(eu dz(,«_)_(l))"'CNJ}
—¥m ((1), dz)
2 0. N:=n"(w) d:=ds, K O)z(_)g; _)__(2) E{L(ez'y dz(;_’f)) +cNy}
=Erne(w, d2)
3 0; Na:n*(&)z) dszdﬁ‘,z XS (Ds(Xl Xj) E{L(es, d:f@:{)) +CN3}

=E¥s ((0, ds)

The convergence of the sequence of risks in the last column to the smallest possible risk

— ‘w) . .
(@) =7 i5 the asympototic optimality property. The following remark shows how asymptotic
optimality implies the convergence of the sample sizes N: to the set of optimal fixed sample
sizes.

Remark 3.1. Let s(w) denote the set of integer minimizers of #.().

(a) If (N, @) is asmptotically optimal at @, then

PWN: € s(w))—1 as i—w. (3.3)
() If rvlw, d)—R(w) a.s., then
P(N; € s(w), eventually)=1 (3.4)

This can be shown as follows. For given w, there exists an € > 0 such that for all#' & s(w),
' (@, @)—r(w) > efor all d € D,. On the event, N; & s(0), ru@, d)—r(w) > € so
that

Elrv(o, d)—r(@)]> € P(Ni & s(w)),

which yields (3.3) by letting i~>cw. Since(N: € s() i.0.) implies rv(w, d)—7(0) > ¢, i.0.,
(3.4) is proved.
The following lemma will be used in section 4 in establishing the asymptotic optimality property.

Lemma 3.1. For prior ® and v, let #=#*(w), m=n*(v) be optimal fixed sample sizes
and let di, 4* € D. denote Bayes decisions with respect to w, v for £#=1, 2, -. Then

0L, @) —r(w) K (3.5)
Sups l Rk(()), ) _Rk(Va dﬁ) | +su1>k I Rk((&), d‘ﬁ) —Rk(\’, df:) l.

Proof. The left inequality follows from the fact that 7(w) is the minimum Bayes risk over
choices d € D, and sample sizes k. Adding and subtracting 7.(v, d”‘) and noting that 7.(v,
) L ralv, di) yields

rul@, &) —=rlw, d2) Lrulo, &) —rlv, &) +nlv, d2)—rleo, dD (3.6
which together with (3.4) implies the right inequality of (3.5). Q.E.D.

The quadratic loss funtion L(8, ) =b6(8—a)?, where b >0, is covered by our results by
factoring b out and replacing ¢ by ¢/b.
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Our methods cover more general cost funtions as well. If the cost funtion is ¢(n) and liminf
¢(n) > R/(G), then for any given G, inf{7.(G) | n=1, 2, --} is attained, and we can define
n*(G) as the smallest minimizer. Moreover, the proof of Lemma 3.1 applies to give the same
conclusion, that is, a bound for excess risk in terms of the supremum of differences in decision
risks over varying sample size problems.

4. Estimation of the normal mean.

The component problem considered in this section is the one introduced in Example 2.1.
Here G=N(p, V) and, letting

A (4.1
T Aty
the posterior distribution of 8 given X=(X;, Xz, -+ ,X.) is
- A
+(1-pX, .
N(pp+(1-pX e ) (4.2)

With this notation, the Bayes estimator (2.8) can be written

dc(if):pp+(1—p)X’. (4.3)
The following remark parallels Remark 3.1.

Remark 4.1. For G=N(y, V) and G'=N(yw, V),

A
R.(G, dH)=Q—p")* " +p72 [(u—p)?+Vvl, (4.4)
| R(G, de)—R.(G", do) | < (w—w*+ | V=V, (4.5)
and
AV (4.6)

R.(G)= =

This can be shown as follows. By(4.3), d¢'(X) =p'w+ (1—~p")X. Since expected squared devia-
tion is variance plus bias squared,

RAG, de")=EcELp w+(1—p)X—6F
=El(1-p) 2 +0* (o))
=(1—p')2'3 +p[V+ (w—w?l.
Then (4.6) follow by replacing G’ by G above and using(4.1,. Since
R(G', d)=(1—p')’ —;—:i +p? YV

if follows that
R.(G, d¢)—R.(G', do")=p"[(w—w?*+(V-V)]
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which yields(4.5).
We seek the optimal sample size »* which mimimizes

AV
7.(G)=R.(G)+en= —— +en

A+nV
among the integrs n=1, 2, . We consider 7(G) as a funtion of real » and the equation
0= d = A7 +
T T T Gt

Its larger solution is

n=(A4/c)”—A/V. 4.7

We see that 7.(G) is convex in # € (—A/V, «) and that the optimal sample size #n*=n*(4,
V) is given by (4.8).

In our empirical Bayes application the variance A of the conditional distribution N(8, V) is
assumed to be unknown but is assumed to be in a given bounded interval (0, a]. Thus we
are taking A to be a nuisance parameter. It is convenient, though not necessary, to require
that at least two observations be taken in each component of the empirical Bayes problem so
that the estimation of A is simple. Therefore, we will optimize sample size over choices =2,
3+ in defining the envelope risk. It follows that

1 ifn<2
n*=n*(4, V)= {n ifn « {2, 3, -} (4.8)
[n] or [n] + 1, otherwise,

where 71 is given in (4.7).
Since R:G)=EsEs(X—0)* <A/2, it follows as in the comment preceding Example 2.1 that
n* L (A/2+2c)/c. Letting M be the integer [a/2c+1]+1, it follows that
2<n™@, MLM<w (4.9
for all A and priors G=N(u, V).

Notice that in the component problem

EX =y, (4.10)
I =«

E— X (X—pr=V+A4, (4.11)
n k=1

and, provided n >2,

E (X, —X )?=A. (4.12)

n—I1 &=
We construct a decision procedure for the empirical Bayes problem with the component descri-
bed above. The unknown prior G is assumed to be from the family of normal distributions &,
the family of conjugate priors. Let G=N(y, V), where g € (=w, ) and V € (0, ).
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Let Ao [, and ¥ be initial nonrandom est1mates of the component nuisance parameter A
and parameters p, V of the prior. Let N;=n *(4» V2. Then X'=Xu, -+ ,Xw,) is observed
in the first component. The empmcal Bayes procedure that we will study is defined through
sequences of estimators A, 1 and ¥, that are &X', --,X) measurable with

Nivi=n (A., V), 1=0, 1-- (4.13)
and

di+s 'H) p.+1pz+(1 pxﬂ) Yier, 1=0, 1 (4- 14)
where

A [Ii" .«

Pi+1— Ai+Ni+1 7. 1=0, 1 (4. 15)
and

Y= 1 z X5 i=1, 2 (4.16)

i— M = ijs Z ’ N

We now define the estimators i, A; and Vi=1, 2, -+ Motivated by (4.10) we define

ﬁ.=17-=l— z Y, i=1, 2, - (4.17)

which is the average of the sample means for the first i components. Motivated by (4.12) we
define

A=S Na, i=1, 2, -~ (4.18)
where
- 1
Si=— Z Sj (4. 19)
S
is the average of the sample variances
-1 ¥ - )
S= N—1 kizlz 2= Y; (4.20
for the first i components. Finally, motivated by (4.11) we define
A A ~
vi=[T:—A]l", i=1, 2, - (4.21)
where
A 1 i
T=— X T; (4.22)
1 =1

is the average of the average squared deviations from ﬁ.:Y.-,

1 N —
T=— %, (1 (4.23)

In (4.23) the centerings change with 7, which creates a more complicated stochastic structure
than exists in (4.20). For the purpose of triangulation, we introduce
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> T, (4.24)

where

A
<

X— w2, (4.25)

=zl
b
il
i

Let 9 be the trivial o-field and let %=cX;, X;, -+ ,X), j=1, 2, -*. The sample size N; is
9~measurable and we see that

E(Y; I 9;'—1):“$ ]:1, 29 b
ES | 9)=4, =1, 2, (4.26)
E(T | 9)=V+4, j=1, 2,

Lemma 4.1. The sequences &zi, Si and 7. are a.s. consistent for y,A4 and V+A, respecti-
vely.

Proof. We will use (4.26) and the theorem on stability about conditional expectation used i. e.
Hall and Heyde(1980, Theorem 2.19). The sequences Y;, Si and 7: are not bounded. However,
we will find random variables Y, S and 7T that are square integrable and stochastically larger
than their absolute values. This implies the hypothesis of Theorem 2.19 that is sufficient for
the a.s. convergence.

Recall that 2<N;<M » 1=1, 2, =~ . Consider the component problem with sample size M
and observations X;, Xz. -, Xu. Let Y=2 | X; |, S=Z X and T=X(X;—w?. From the defini-
tions (4.16), (4.20) and (4.25) we see that ¥, S and T are stochastically larger than | ¥ |,

| S:l and | T:1 i=1, 2, -+ . Also ¥’ < MS and, conditional on 6, the distributions of S and
T are noncentral chi-square distibutions with second moments that are integrable N(u, V). Thus,
Y, S and T are square integrable. Q.E.D

A N
Lemma 4.2. The estimator 7; and V: are a.s. consistent for V+A4 and V.

Proof. We have from (4.23) and (4.25) that

—T,=F—w QY—u—Y). 4.27)
Since Y,-—_-Z‘.Y,-/i, we have from (4.22) and (4.24), that
f‘—f*(f—p)z (4.28)

It follows from Lemma 4.1 that T, is a.s. consistent for V+A. Using (4.21) and Lemma 4.1
it follows that V,- is consistent for V. Q.E.D.

Theorem 4. 1. Let A L a. Then the empirical Bayes procedure (N, d) defined by (4. 13) — (4.
23) is asymptotically opt1mal at each G=N(u, V).

Proof. From Lemma 3.1 and (4.5),
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0L 70ei(Gy din) =7(6) L2~ W*+21 V=V | (4.29)

Let Y, T be the random variables defined in the proof of Lemma 4.1. Then for p >0,
ElY | LEY+D)""<wandE | T; | " L E(T+1)"™ < w for j=1, 2, . Hence, the {if}
and the {T;} are uniformly integrable. Thus, {{i?} and {7} are uniformly integrable and the a.s.
convergence (lemma 4.1) implies that

E(i—p?—o0 (4.30)
and

E|T—~(V+4) | —o0. (4.31)
It follows form the triangle ineguality and (4.28) that

V=V K I T=T: 1 + I T—(V+A) | + | (7+A) —(V+4) |

=~ | T—(V+a) | + 1 A-4l. (4.32)
The dominated convergence theorem and Lemma 4.1 imply

ElA~A1-0 (4.33)
which together with (4.29) —(4.32) establish the result.Q.E.D

References

1. Gilliland, D. and Karunamuni, R(1988). On empirical Bayes with sequential component. Annals of
the Institute of Statistical Mathematics, 40, 187-193.

2. Hall, P. and Heyde, C.C.(1980). Martingale limit theory and its application, Academic Press, New
York.

3. Karunamuni, R(1985). Empirical Bayes with sequential components. Ph.D. Thesis, Dept. of Statistics
& Probability, Michigan State University.

4. Karunamuni, R(1988). On empirical Bayes testing with sequential components, Annals of Statistics,
16, 1270-1282.

5. Laippala, P.(1979). The empirical Bayes approach with floating optimal sample size in binomial experi-
mentation. Scandinavian Journal of Statistics, 6, 113-118 : coorection note 7 105.

6. Laippala. P.(1985). The empirical Bayes rules with floating optimal samle size for exponential conditio-
nal distributions. Annals of the Institute of Statistical Mathematics, 37, 315-327.

7. O’Bayan, T.(1972). Empirical Bayes results in the case of non-identical components. Ph.D. Thesis,
RM-306, Dept. of Statistics and Probability, Michigan State University.

8. O’Bayan, T.(1976). Some empirical Bayes resuits in the case of component problem with varying
sample sizes for discrete exponential families. Annals of Statistics:; 4, 1290-1293.

9. Robbins, H.(1956). The empirical Bayes approach to statistics. Proc. 3rd Berkeley Symp. Math.
Statist. Prob. 1, 157-163n University of California Press.

10. Robbins, H. (1966). The empirical Bayes approach to statistical decision problems. Annals of Mathemati-
cal Statistics, 35, 1-20.



