• Title/Summary/Keyword: Battle Command

Search Result 44, Processing Time 0.025 seconds

A Study on the Necessity of Mission Command in Navy Through the Study of Naval Battle Comparison - Focus on Battle of St. Vincent and Battle of Jutland - (해전 비교연구를 통한 해군의 임무형 지휘 필요성에 관한 연구 - 세인트 빈센트 곶 해전과 유틀란트 해전을 중심으로 -)

  • Cho, Seon-Gjin;Jeon, Yoon-Jae
    • Strategy21
    • /
    • s.46
    • /
    • pp.205-238
    • /
    • 2020
  • The origin of mission command can be traced to the era of the Prussian military reforms led by General Gerhard von Scharnhorst after defeats in battle of Jena and Auerstadt in 1806 against Napoleon I. Mission Command is the conduct of military operations through decentralized execution based upon mission-type orders. Commanders issue mission-type orders focused on the purpose of the operation rather than details of how to perform assigned tasks. The mission command has become the command philosophy of the German military and recently many countries in the west accept it as a command philosophy. This study compare and analyze the Battle of St. Vincent and the Battle of Jutland to make sure if the army-initiated mission commands were also useful for the navy. From the late 18th century, represented by the era of Nelson, Royal navy changed from the inherited rigid command culture to guaranteeing the disciplined initiative of its subordinate commanders. In the Battle of St. Vincent in 1797, Nelson acted contrary to the commander's orders at the crucial moment, which gave Britain a decisive victory. On the contrary more than 100 years later, the command culture of the Royal navy changed into a centralized command culture. In the Battle of Jutland in 1916, Royal Navy couldn't win because the rigid command culture did not guarantee initiative of subordinate commanders and subordinate commander's passive attitude of waiting for the commander's instructions even at critical moments. Therefore, a mission command that guarantees the initiative of subordinate commanders is a useful concept even in the navy because it makes subordinate commanders to take full advantage of a sudden change in battle. Today's advanced information and communication technologies have raised questions about mission command. But even advanced technology can't completely eliminate the fundamental nature of the war-the fog of war. War is chaotic and unpredictable. In the flood of lots of informations, senior commander's judgement is not always right because he(she) is also human, he(she) can make mistakes. In the age of informatization, mission command is still effective because it involves increasing interaction and synergy between senior and subordinate commanders by ensuring their independence. Therefore ROK navy also needs to activate mission command. ROK navy must dismantle the zero-defect mentality and apply from educations as Prussian did to establish a mission command culture.

A Concept Study on Improving Command Post Vehicles for Operating Battle Management System (전장관리체계 운용을 위한 전투지휘용 차량의 성능개량 개념)

  • Park, Seung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.16-22
    • /
    • 2008
  • So far, Korean command post vehicles(CPs) have used voice-only radio communication among the mechanized troop units such MBTs and IFVs, etc. But digital data communication technology should be introduced to improve mission success capabilities and accommodate integrated combat capabilities through increasing SA(situation Awareness), or spatiotemporal synchronization of military operation in battle field environment. Therefore, conventional CPs, which have been operated without digital network, urgently needs to mount a battle management system which furnish with tactical information network, considering that korean new MBTs or new IFVs will be fielded soon. This study suggests some performance enhancement method which might be applicable to CPs which have a role of connecting Battalion unit to Brigade C4I system.

The Tactical review of the Battle of Tsushima - with focus on disposition & maneuver, and damage control - (쓰시마 해전의 전술적 재조명 - 배진과 기동, 손상통제를 중심으로 -)

  • Lee, Chang Hyun
    • Strategy21
    • /
    • s.44
    • /
    • pp.213-253
    • /
    • 2018
  • The Russo-Japanese War(1904-1905) in the early 20th century greatly influenced the international politics in Northeast Asia and the destiny of both countries. There are many studies on the cause of the outbreak and its effect on the Korean peninsula. The victory and defeat of the battle of Tsushima also the subject of research by renowned scholars and navy officers. Many previous studies have analyzed the process of engagement. However, There was a lack of research that analyzed at the tactical level of naval commanders. Therefore, this study tries to review the battle of Tsushima in terms of tactical level, that is formation, maneuvering, damage control. Naval operations at sea with many variables are not always done as planned. The intuitive judgement and readiness have had a decisive impact on victory and defeat. The analysis of the naval warfare on the basis of formation, maneuvering, and damage control makes the cause of the win more clearly. The conclusion of the this study can be summarized in five ways. First, victory would be achieved through the suppression of the beginning. The destiny of the Tsushima battle was determined by an 1 hour after first firing. The Japanese fleet caught fire by paralyzing the command and control capabilities of the Russian fleet. Second, the Japanese fleet's power was superior to the Russian fleet. In general, Japan and Russia had similar powers, and Admiral Togo's "T crossing tactics" decisively contributed the victory. However, when compared to the weapon system level, formation and maneuvering, Japan was much more dominant. Third, people realized that one side to be annihilated in the battle between similar powers after the Tsushima battle. The common perception before the Battle of Tsushima was that the battle ship would not sunken, and that the result of wiping out was difficult. However, there is s time for one sided victory and defeat depending on the early suppression nad the destruction of the command and control ability. Fourth, it is the importance of damage control ability. The main cause of the Russian fleet's loss of command and control ability was thick smoke from fire, and maneuverability was greatly deteriorated due to coal overload. In this way, importance is still valid after more than 100 tears. Fifth, the area of uncertainty. In the navy battles, one or two shots of clear firing in the beginning and small misconception and minor mistakes decide win or loss. Ultimately, this area of fortune can be linked to mindset of the commander. I hope this research will be help to naval researchers and naval commanders at the sea.

A Study on the Battle Management Language Application for the C4I and M&S Interoperation in ROK Forces (한국군에서의 C4I체계와 M&S 상호운용을 위한 BML 적용에 관한 연구)

  • Jung, Whan-Sik;Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.91-101
    • /
    • 2010
  • Battle Management Language (BML) is defined as an unambiguous language intended to provide for command and control of simulated and live forces in U.S. It has been developed to connect between command and control system and Modeling & Simulation in the U.S., including NATO M&S Working Group. Its goal is to provide situational awareness and offer a path forward for interoperation of C2 systems and simulations. This study deals with BML development in U.S. that begins from army and is being expanded in multinational environment. It also proposes the BML application for C4I and M&S interoperation in the Korean forces. Recent developments of BML in U.S. have shown the potential for interoperation between C2 systems and simulations in a coalition environment. Finally, this study proposes a general BML application method and shows the example of its application to the Korea Joint Command Control System (KJCCS). It provides an architecture and a milestone for BML application in the Korean forces.

ROK Army War-Game Simulation System Development (한국 육군 제대별 워게임 모의체계 개발사례)

  • 이해관;김장현
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.31-35
    • /
    • 2003
  • In the late 1990s, ROK Army started developing a simulation model(ChangJo21) for division/corps level battle command training and finished it successfully. The CJ2l model provides realistic representation of Korean characteristics in doctrine, weapon systems, terrain, and climate etc. The successful development of CJ2l implanted us with confidence on high-technology model development and this has been our motive for development of JeonToo21 for battalion/regiment level battle command training and other war-game models like Hwarang21 (Rear Area Ops. Model) and Vision21 (Division Combat Analysis Model). Eventually, ROK Army was able to establish M&S system by echelons, from battalion to corps. Moreover interoperability between ROK-US simulation systems are on the progress. In this paper, we introduce recently developed 3 war-game simulation models and mention on the future directions of ROK Army Modeling & Simulation.

  • PDF

Smart Device Security Technology for Cyber Defense (사이버 국방을 위한 스마트 단말 보안기술)

  • Son, Iek-Jae;Kim, Il-Ho;Yang, Jong-Hyu;Lee, Nam-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.986-992
    • /
    • 2012
  • As the utilization of smart mobile devices such as smartphones increases, the desire to utilize such devices to control and monitor combat situations also arises. As smart mobile devices with various ICT get integrated with various weaponry system, a new phase of future warfare can be introduced. Moreover, smartphone-based real-time information technology for joint battle command system will be converged with surveillance control to become a leading example of convergence of cyber defense and information technology. Furthermore, mobile device security technology ideal for mobile wireless network environments can be applied to military robots. The following paper will give an overview of smart mobile device usage used for military purposes in battle command system, various security threats and the mobile device security technology to correspond to such security threats.

Development of Network Based Tank Combat Training Model (네트워크 기반의 전차 교전 훈련 모델 개발)

  • Roh, Keun Lae;Kim, Eui Whan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.27-33
    • /
    • 2008
  • As a part of development of Korean K2 main battle tank, embedded training computer to be operated in the main equipment, which makes it possible to train without a special-purposed training simulator, was adopted for tank combat training. The category of embedded training of Korean K2 main battle tank includes driving training, gunnery training, single tank combat training, platoon level combat training, and command and platoon leaders combat training. For realization unit level tank embedded training system, the virtual reality was utilized for real time image rendering, and network based real time communication system of K2 tank was utilized for sharing status information between tanks. As a result, it is possible to train themselves on their own tank for enhancing the operational skills and harmonized task with members.

  • PDF

Armed Vehicle BAttle Group Simulation : BAGSim (기갑 전투그룹 교전 시뮬레이션 모델)

  • 최상영
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.1
    • /
    • pp.73-83
    • /
    • 2003
  • This paper presents armed vehicle BAttle Group Simulation model(called BAGSim) which is an object-oriented simulation system for representing battle group engagement consisting of tanks and helicopters. BAGSim is designed in the evolutionary software life cycle approach with the Unified Software Development Process, and implemented with C++ language. BAGSim consists of a preprocessor for engagement scenario definition and simulation data set up, a main processor for triggering engagement event and advancing simulation clock, and a post processor to record simulation histories. Application scenario covers several type of engagement among command tanks, fight tanks, scout helicopters, attack helicopters, anti-tank guided missiles, and decoys. Thus, BAGSim can be effectively used as an analytic tool to examine some operational concepts and tactics, further experimentally fine tune tank design options.

  • PDF

Future battle command system measures light-weight design of the data (미래 전투지휘체계의 데이터 경량화 설계 방안)

  • Kim, Ju-Hyun;Choi, Tae-Bong;Kang, Kil-Jae;Kim, Han-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1106-1109
    • /
    • 2013
  • 미래 육군의 대대급이하 NCW 핵심은 기반통신장비인 TMMR(Tactical Multi Function Terminal)과 전투지휘를 위한 전장단말기인 대대급이하 전투지휘체계(B2CS)로 대표할 수 있다. 이중 TMMR은 음성과 데이터 통신이 가능토록 개발중인 무전기이다. 하지만, 군 무전기 특성상 은 엄폐 지역에서의 통신 보장을 위해 낮은 주파수 대역을 사용함에 따라 최대 지원 가능한 전송속도는 매우 한정적이다. 따라서 TMMR을 기반 통신장비로 활용하는 B2CS는 이 낮은 대역폭을 어떻게 효율적으로 사용할 것인가가 핵심이다. 따라서 본고에서는 이를 위해 군 운용환경에서의 TMMR 기반하 B2CS 운용 시 필요한 TMMR의 요구대역폭을 분석, 데이터 경량화 설계가 필요함을 확인하고, 이에 따른 B2CS에서 적용하고 있는 데이터 경량화 설계 방안을 제시하고자 한다.

The LVC Linkage for the Interoperability of the Battle Lab (Battle Lab에서의 상호운용성을 위한 LVC 연동방안)

  • Yun, Keun-Ho;Shim, Shin-Woo;Lee, Dong-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • In the M&S filed, The Battle Lab is available for acquisition, design, development tool, validation test, and training in the weapon system of development process. Recently, the Battle Lab in the military of Korea is still in an early stage, in spite of importance of battle lab construction. In the environment of network centric warfare, a practical use of the M&S which is connecting live, virtual and constructive model can be applied to all field of System Engineering process. It is necessary thar the Battle Lab is not restricted by time and space, and is possible for the technical implementation. In this paper, to guarantee the interoperability of live and virtual simulation, virtual simulators connect live simulators by using the tactical data link. To guarantee the interoperability of virtual and constructive simulation, both virtual simulators and constructive simulators use the RTI which is the standard tool of M&S. We propose the System that constructed the Air Defence Battle Lab. In case of the approach of target tracks, The Air Defence Battle Lab is the system for the engagement based on a command of an upper system in the engagement weapon system. Constructive simulators which are target track, missile, radar, and launcher simulator connect virtual simulators which are MCRC, battalion, and fire control center simulators using the RPR-FOM 1.0 that is a kind of RTI FOM. The interoperability of virtual simulators and live simulators can be guaranteed by the connection of the tactical data links which are Link-11B and ATDL-1.