• Title/Summary/Keyword: Battery power modules

Search Result 70, Processing Time 0.033 seconds

A Study on Concentrating Photovoltaic Module with Plate Structure (평판 구조의 집광형 태양광 모듈 구조에 관한 연구)

  • Park, Seung-Jae;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.629-634
    • /
    • 2013
  • This study aims to investigate a new structure for a concentrating photovoltaic (PV) module using a III-V compound semiconductor solar cellto solve the problems of existing concentrating PV modules and to explore a concentrating optical system with a flat structure, which shows remarkable advantages in terms of manufacturing cost, installation, and maintenance. This study should greatly contribute toward the development of concentrating PV modules. This study was performed to achieve an improvement in efficiency and economy and to implement an actual product. A new source of renewable energy is the only way in which countries that cannot produce oil can even emerge as an energy power. Therefore, this work can serve as a fundamental study that will help South Korea grow into a country that is a PV power generation force.

Design and implementation of IoT based controllers and communication module interfaces for stand-alone solar system

  • Lee, Yon-Sik;Mun, Young-Chae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.129-135
    • /
    • 2019
  • This paper is part of research and development for stand-alone solar system without commercial power supply. It implements firmware of controller for operation of stand-alone solar system by applying IoT technology and also develops communication modules that allow multiple solar lamps to send and receive data through wireless network. The controller of the developed stand-alone solar system can effectively charge the power generated by the solar module, taking into account the battery's charge and discharge characteristics. It also has the advantage of attaching wireless communication modules to solar lamp posts to establish wireless communication networks without incurring communication costs. In addition, by establishing IoT gateway middleware platform for each installation site, it forms a foundation to operate multiple solar lamp posts into multiple clusters. And, it is expected that the data collected in each cluster will be used to enable configuration and control of operational information, thereby inducing convenience and efficiency of remote operation and management.

OF-LED illuminated Display Board System for Energy Saying (OF-LED를 이용한 에너지 절약형 광고 조명 시스템)

  • Lee S. R.;Jeon C. H.;Lee S. W.;Lee E. C.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.851-854
    • /
    • 2004
  • This paper studies Optical Fiber(OF) - LED illuminated display board system for energy saving. The OF-LED illuminated display board system has PV modules, batteries, and charge & discharge system, and dynamic full color display controller. Both maximum power point tracker (MPPT) and constant current & constant current controls (CCVC) are used In govern the charging system. It can be improve the charging efficiency of battery. The objective of this thesis paper is to build advertisement lighting system with OF-LED in to charge a 12-volts lead acid battery by using a field wired PV array. We saved the maintenance cost and developed of advertisement effectiveness. To verify the proposed OF-LED illuminated display board system for energy saving, the detail simulation and experiment results indicate that operating characteristics are verified by experiment with a laboratory prototype in this paper.

  • PDF

Modularized Charge Equalization Converter for Hybrid Electric Vehicle Lithium-Ion Battery Stack

  • Park, Hong-Sun;Kim, Chong-Eun;Kim, Chol-Ho;Moon, Gun-Woo;Lee, Joong-Hui
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.350-352
    • /
    • 2007
  • Modularized charge equalization converter for HEV lithium-ion battery cells is proposed in this paper, in which intra-module and inter-module charge equalization can be achieved at the same time. For intra-module charge equalization, the conventional flyback DC/DC converters of low power and small size are employed, in which all of the primary sides are coupled in parallel for selective charge of the specific under charged cell within the module. For inter-module charge equalization, the flyback DC/DC converters are also added, in which all the secondary windings are electrically linked in parallel for automatic charge balancing among the modules. An engineering sample of forty cells hiring the proposed cell balancing scheme is implemented and its experimental result shows that the proposed modularized charge equalization circuit has good cell balancing performance.

  • PDF

Z-Source Inverter with SiC Power Semiconductor Devices for Fuel Cell Vehicle Applications

  • Aghdam, M. Ghasem Hosseini
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.606-611
    • /
    • 2011
  • Power electronics is a key technology for electric, hybrid, plug-in hybrid, and fuel cell vehicles. Typical power electronics converters used in electric drive vehicles include dc/dc converters, inverters, and battery chargers. New semiconductor materials such as silicon carbide (SiC) and novel topologies such as the Z-source inverter (ZSI) have a great deal of potential to improve the overall performance of these vehicles. In this paper, a Z-source inverter for fuel cell vehicle application is examined under three different scenarios. 1. a ZSI with Si IGBT modules, 2. a ZSI with hybrid modules, Si IGBTs/SiC Schottky diodes, and 3. a ZSI with SiC MOSFETs/SiC Schottky diodes. Then, a comparison of the three scenarios is conducted. Conduction loss, switching loss, reverse recovery loss, and efficiency are considered for comparison. A conclusion is drawn that the SiC devices can improve the inverter and inverter-motor efficiency, and reduce the system size and cost due to the low loss properties of SiC devices. A comparison between a ZSI and traditional PWM inverters with SiC devices is also presented in this paper. Based on this comparison, the Z-source inverter produces the highest efficiency.

Design, Implementation and Testing of HF transformers for Satellite EPS Applications

  • Zahran, Mohamed
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.217-227
    • /
    • 2008
  • The electric power subsystems (EPS) of most remote sensing satellites consist of a solar array as a source of energy, a storage battery, a power management and control (PMC) unit and a charge equalization unit (CEU) for the storage battery. The PMC and CEU use high frequency transformers in their power modules. This paper presents a design, implementation and testing results of a high frequency transformer for the EPS of satellite applications. Two approaches are used in the design process of the transformer based on the pre-determined transformer specifications. The transformer is designed based on an ETD 29 ferrite core. The implemented transformer consists of one center-tapped primary coil with eleven center-tapped secondary coils. The offline calculation results and measured values of R, L for transformer coils are convergence. A test circuit for measuring the transformer parameters like voltage, current and B-H hysteresis was implemented and applied. The test results confirm that the voltage waveforms of both primary and secondary coils were as desired. No overlapping occurred between the control signal and the transformer, which was not saturated during testing even during a short circuit test of the secondary channels. The dynamic B-H loop characteristics of the used transformer cores were measured. The sample test results are given in this paper.

Auxiliary Power Interface Design for Power Control and Distribution Unit (전력조절분배기의 보조전원 설계)

  • Park, Sung-Woo;Jang, Jin-Beak;Park, Hee-Sung;Yoon, Hee-Kwang
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.239-242
    • /
    • 2009
  • Power Control and Distribution Unit (PCDU) plays roles of power generation control for solar array panel, power storage control for battery system, power conversion for unregulated and regulated primary bus and power distribution to bus and payload system. The selection and design of the proper auxiliary power interface for PCDU depending on various mission is one of the most important step for electrical power subsystem design. In this paper, the general design approach of auxiliary power interface for PCDU which can be used for small-sized LEO satellites application is given. And, the auxiliary power design concept for always alived modules such as solar array regulator and house keeping module is also suggested.

  • PDF

Generation of Daily Load Curves for Performance Improvement of Power System Peak-Shaving (전력계통 Peak-Shaving 성능향상을 위한 1일 부하곡선 생성)

  • Son, Subin;Song, Hwachang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.141-146
    • /
    • 2014
  • This paper suggests a way of generating one-day load curves for performance improvement of peak shaving in a power system. This Peak Shaving algorithm is a long-term scheduling algorithm of PMS (Power Management System) for BESS (Battery Energy Storage System). The main purpose of a PMS is to manage the input and output power from battery modules placed in a power system. Generally, when a Peak Shaving algorithm is used, a difference occurs between predict load curves and real load curves. This paper suggests a way of minimizing the difference by making predict load curves that consider weekly normalization and seasonal load characteristics for smooth energy charging and discharging.

Switching Control Strategy of Bidirectional Converter for Energy Storage System in Photovoltaic Hybrid Modules (태양광 Hybrid Module용 에너지 저장 장치에서의 양방향 컨버터 스위칭 제어 기법)

  • Jang, Jin-Woo;Park, Yun-Ho;Kim, Young-Ho;Choi, Bong-Yeon;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.467-468
    • /
    • 2013
  • In this paper, a switching control strategy of bidirectional converter for energy storage system in photovoltaic hybrid modules is proposed. The bidirectional converter for energy storage system (ESS) with battery is connected with DC link in parallel which is located between current source flyback converters(CSFC) and unfolding bridge. Because CSFC generates rectified sinusoidal current, the bidirectional converter requires suitable control strategy. Therefore, a theoretical analysis of the proposed switching control strategy is presented. And, validity is confirmed through simulation results.

  • PDF

A Series Operation Algorithm For Voltage Balancing Between Modules Of Modular Battery Pack Charging/Discharging System (모듈러 배터리팩 충·방전기의 모듈 간 전압 밸런싱을 위한 직렬 운전 알고리즘)

  • Lee, Yoon-Seong;Kang, Kyung-Min;Choi, Bong-Yeon;Kim, Mi Na;Lee, Hoon;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.140-141
    • /
    • 2019
  • This paper proposes a series operation algorithm for voltage balancing of modular battery pack charging/discharging system using 3P-CFDAB (3-Phase Current-Fed Dual Active Bridge) converter. By using the proposed algorithm, we can prevent deterioration or loss of a particular module. The algorithm in this paper was verified through PSIM simulation.

  • PDF