• Title/Summary/Keyword: Battery energy storage system (BESS)

Search Result 144, Processing Time 0.03 seconds

A Study on Methodology of Optimal Operation of BESS and Diesel Generators in a Microgrid Considering Efficiency Characteristics According to the Power Ratios of Diesel Generators (디젤발전기의 출력비에 따른 효율을 고려한 마이크로그리드에서의 BESS와 디젤발전기의 최적 운영 기법에 관한 연구)

  • Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.539-546
    • /
    • 2016
  • With the growing interest of microgrid systems all over the world, many studies on microgrid operation are being carried out. The battery energy storage system(BESS) and the diesel generator are key equipments in the microgrid. In this paper, we analyze the characteristics of fuel consumption according to the power ratio of the diesel generator. Then, the formula to represent the unit cost of generation according to the power ratio of the diesel generator is derived. A new modeling of battery operation is presented considering the lifetime reduction according to increasing the cycles of charge/discharge operation of the battery. The methodology of determining the optimal operation of the battery and the diesel generator is presented by the use of the formula of fuel consumption of the diesel generator and the new modeling of battery operation. It is shown that this optimization methodology can be applied effectively for economical operation of the BESS and the diesel generator of a microgrid by case studies.

Renewable Energy Configuration Plan of Micro Grid in Gapa Island (가파도 마이크로그리드 신재생 에너지 전원 구성 방안)

  • Kim, Dong-Wan;Ko, Ji-Han;Kim, Seong Hyun;Kim, Homin;Kim, Eel-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.16-23
    • /
    • 2014
  • This paper presents a renewable energy configuration plan of Micro grid in Gapa Island. To analyze the characteristics of Micro grid, BESS (Battery Energy Storage System), PMSG (Permanent Magnet Synchronous Generator) and SCIG (Squirrel Cage Induction Generator) are first modelled. The PMSG and SCIG will operate with basis on the real power curve. when the total power demand is larger than the total power generation, the BESS will be operated and the SOC (State Of Charge) is reduced. If the value of SOC could drop down to limited value, the system may be broken because of the voltage drop of BESS. To solve this problem, a DG (Diesel Generator) is used to charge the BESS and keep the voltage value of BESS with in a allowance limit. This paper represents simulation result when PMSG, SCIG connected to the Micro grid installed in Gapa Island. The simulation is carry out by using PSCAD/EMTDC program with actual line constant and transformer parameter in Gapa Island.

Comparative Analysis of the characteristics of Ni-rich LIB according to temperature change (온도 변화에 따른 Ni-rich LIB의 설계인자별 파라미터 특성 비교 분석)

  • Gwon, Sun-Jong;Im, Ji-Hun;Choe, Jin-Hyeok;Kim, Jong-Hun
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.131-132
    • /
    • 2018
  • The world market for BESS (Battery Energy Storage System) is growing rapidly, and battery technology is also developing. It is important to understand the battery characteristics and develop a control strategy to develop the optimal BMS (Battery Management System). In this paper, we compare and analyze the parameter characteristics of NCM LIB (Lithium Ion Battery) according to the temperature change.

  • PDF

A Study on the Operating Characteristics for the Grid Interconnected PV System with BESS (BESS를 적용한 계통연계형 PV시스템의 운전특성에 관한 연구)

  • Lee, Kang-Yeon;Jeong, Byeong-Ho;Cho, Geum-Bae;Baek, Hyung-Lae;Jung, Hae-Duck
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.69-77
    • /
    • 2006
  • Photovoltaic is an attractive technology to remote power applications, because of its reliability, low maintenance, and zero fuel requirements. In this paper represents residential PV system based on BESS(battery energy storage system) for managing the electric power, a pattern of daily operation considering the load characteristics of the house, the generation characteristics of PV power, and utility power leveling. For apply to control algorithm, we consider the load on monthly power consumption trend and daily usage pattern. As for the control of the proposed system, to increase the conversion efficiency of the PV power, bidirectional converter is used for MPPT and SPWM inverter. An experimental system is implemented, and some experimental results are provided to demonstrate the effectiveness of the proposed system.

Fuzzy Droop Control considering SOC Balancing of BESSs (다수 BESS의 SOC Balancing을 고려한 퍼지 드룹 제어)

  • Han, Seong-Geun;Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.616-622
    • /
    • 2015
  • A microgrid which is composed of distributed generation systems, energy storage systems and loads is operated in the grid-connected mode and in the islanded mode. Especially, in the islanded mode, a microgrid should maintain frequency in the allowed range. The frequency is decided by a balance between power supply and power demand. In general, the frequency is controlled by using battery energy storage systems (BESSs) in the microgrid. Especially, droop control is applied to controlling BESSs in the microgrid. Meanwhile, over-charging and deep-discharging of BESS in operation and control cause life-shortening of batteries. In this paper, a fuzzy droop control is proposed to change droop gains adaptively by considering state of charge (SOC) of BESSs to improve the life cycle of the battery. The proposed fuzzy droop control adjusts droop gains based on SOC of BESSs in real time. In other to show the performance of the proposed fuzzy droop control, simulation based on Matlab/Simulink is performed. In addition, comparison of the convention droop control and the proposed fuzzy droop control is also performed.

Consideration for Technical Trend of Large Scale BESS PCS (대용량 BESS를 위한 PCS 기술동향에 대한 고찰)

  • Myung, Hongjae
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.273-274
    • /
    • 2011
  • 최근 급격한 전력수요의 증가는 발전설비 및 송배전 설비의 투자확대를 요구하고 있고 태양광, 풍력 등 신재생에너지 발전의 보급은 전력품질을 저하하는 요인으로 작용하여 이에 대한 대안으로 배터리를 이용한 에너지 저장장치(BESS : Battery Energy Storage System)의 개발이 활발히 이루어지고 있다. 본 논문에서는 BESS의 구성요소 중 배터리의 전력을 계통망과 연계하기 위한 전력 변환 장치인 PCS에 요구되는 기능과 기술동향에 대해 기술한다.

  • PDF

Operational Strategy for a BESS-based Microgrid (BESS 기반 마이크로그리드 운영전략)

  • Lee, Ha-Lim;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1666-1672
    • /
    • 2015
  • Small islands are quite adequate places where microgrid system with renewable sources can replace diesel engines as operation costs of diesel engine in most small islands are very high. To get the large amount of renewable energy, the microgrid system has very large capacity of renewable sources. The system with large capacity of renewable sources can meet the case when supplied energy is greater than the load and the fluctuation of source output is very large. The battery energy storage system can be a solution to stabilize the system with large capacity of renewable sources. In this case, BESS can be utilized as a master source for the synchronous operation of all sources including diesel engine, wind turbine and PV. The diesel generators can be used as a backup in case the BESS SOC goes below a certain level. In this paper, we suggest a novel unit commitment of diesel generators and operation schedule of pump for water supply service with the information of wind forecast, PV forecast, and load forecast. The proposed methods has been implemented and tested at the test bed in Gasa-Island.

Generation of Daily Load Curves for Performance Improvement of Power System Peak-Shaving (전력계통 Peak-Shaving 성능향상을 위한 1일 부하곡선 생성)

  • Son, Subin;Song, Hwachang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.141-146
    • /
    • 2014
  • This paper suggests a way of generating one-day load curves for performance improvement of peak shaving in a power system. This Peak Shaving algorithm is a long-term scheduling algorithm of PMS (Power Management System) for BESS (Battery Energy Storage System). The main purpose of a PMS is to manage the input and output power from battery modules placed in a power system. Generally, when a Peak Shaving algorithm is used, a difference occurs between predict load curves and real load curves. This paper suggests a way of minimizing the difference by making predict load curves that consider weekly normalization and seasonal load characteristics for smooth energy charging and discharging.

Economic Assessment of the Battery Energy Storage System with Its Customer Type (수용가 형태에 따른 전지전력저장시스템의 경제성 평가)

  • 손학식;최준호;김재철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.81-89
    • /
    • 2002
  • The Battery Energy Storage System (BESS) has lots of advantages such as load leveling, quick response emergency power (spinning reserve), frequency and voltage control, improvement of reliability, and deferred generation and transmission construction. However, it is very critical that economic feasibility requires justification from the customer side of meter to promoting the dissemination of BESS in nation widely. In this paper, we proposed the economic assessment model of customer owned BESS which is complemented and improved the existing model. The proposed model is applied to the typical customer types, i.e. light industrial, commercial, and residential, which are taken from the statistical analysis on the load profile survey of Korea Electric Power COmpany (KEPCO). The economic viability performed for each customer load type to justifying their economic feasibility of BESS installation from the economic measures such as payback period, Net Present Worth (NPW), Rate Of Return (ROR). The results show that the BESS has economic benefits to the specific customer type, i.e. residential customer. Therefore, the government and the energy agency should be committing the support program, such as tax incentive, financial support, to disseminate the BESS nation widely. The results of this paper are useful to the customer investment decision-making and the national energy policy & strategy in Korea.

Determination of Optimal sizes of Battery Energy Storage System Considering Rate-Of-Return for Customers-side (수익률을 고려한 수용가측 전자전력저장시스템의 최적용량 선정)

  • Hong, Jong-Seok;Kim, Jae-Chul;Choi, Joon-Ho;Son, Hak-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.146-148
    • /
    • 2001
  • This paper discusses the optimal sizes of BESS. The goal must be optimized electricity charge of the customers-side with choosing the time-of-use rates. Therefore the cost is minimized by BESS installed the customers-side. Feasible ROR that means the ratio of capital costs to economic effect owned the optimal BESS sizes is determined the suitable domestic condition based on the battery cost and power converter system cost. Payback period times can be presented by BESS through the ROR. Multi-Pass Dynamic Programming(MPDP) algorithm is applied to the customer for the optimal sizes determination in this paper. It is to solve the optimal solution under the constraints. To investigate the efficiencies of the constraints, it is applied the typical load curve to the high-voltage customer owned Time-Of-Use(TOU) whether BESS is installed or not. Well, The result is obtained that feasible BESS sizes can be achieved the suitable customers-side of meter through the ROR.

  • PDF