• 제목/요약/키워드: Battery energy storage

검색결과 755건 처리시간 0.031초

마이크로그리드 독립운전모드를 위한 주파수 추종에 관한 연구 (A Novel Frequency Tracker for Islanded-Mode Operation in Microgrid)

  • 전진홍;김경훈;황철상;김장목
    • 전기학회논문지
    • /
    • 제60권7호
    • /
    • pp.1331-1338
    • /
    • 2011
  • This paper proposes a method for frequency control of islanded microgrid with battery energy storage system. For frequency control of islanded microgrid, battery energy storage system uses a phase locked loop algorithm with positive sequence components for a fast frequency estimation. Microgrid is a power system with small inertia because it has small capacity generators and inverter systems for renewable energy. So, Islanded microgrid's frequency varies fast and large as small generation and load changes. To reduce frequency variation of islanded microgrid, it needs a device with fast frequency response. For fast frequency response, a fast frequency tracking is important. To show the validation of proposed fast frequency tracking algorithm, battery energy storage system with proposed algorithm is tested in microgrid pilot plant.

하이브리드 에너지 저장장치를 탑재한 무가선 트램의 전력분배전략 (Power Distribution Strategy for Wireless Tram with Hybrid Energy Storage System)

  • 강경진;오용국;이지호;염민규;곽재호;이형철
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1615-1621
    • /
    • 2014
  • A wireless tram which runs without catenary and instead uses batteries installed in the tram has been recently researched actively. This paper presents a new method maximizing absorption of regenerative energy of a wireless tram and extending life cycle of the energy storage device in the wireless tram by applying line-optimized charging and discharging scenario. Energy efficiency and life cycle of energy storage system (ESS) are highly dependent on the characteristic of operating conditions. For example, frequent charge and discharge with high power cause the problems that decrease the battery life cycles. Hybrid energy storage system (HESS) is combination of two ESSs which have complementary characteristics to each other. HESS can provide even better functionality and performance than the battery only ESS due to the synergy effect of two ESSs. This paper also provides a power distribution strategy and driving scenarios which increase the life cycle and energy efficiency of the HESS consisting of a battery and an ultra-capacitor. The developed strategy was tested and verified by a hardware-in-the-loop-simulation (HILS) system which emulates the a wireless tram.

1MWh급 레독스흐름전지의 부하이전용 최적운전에 따른 전기요금 절감효과 분석 (Analysis of Electricity Cost Saving Effect by the Optimal load shifting Operation with 1MWh Redox Flow Battery)

  • 백자현;고은영;강태혁;이한상;조수환
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1151-1160
    • /
    • 2016
  • In recent years, the energy storage systems such as LiB, NaS, RFB(Redox-Flow Battery), Super- capacitor, pumped hydro storage, flywheel, CAES(Compressed Air Energy Storage) and so on have received great attention as practical solutions for the power supply problems. They can be used for various purpose of peak shaving, load leveling and frequency regulation, according to the characteristics of each ESS(energy storage system). This paper will focus at 1 MWh RFB system, which is being developed through the original technology project of energy material. The output of ESS is mainly characterized by C-rate, which means that the total rated capacity of battery will be delivered in 1 hour. And it is a very important factor in the ESS operation scheduling. There can be several options according to the operation intervals 15, 30 and 60minutes. The operation scheduling is based on the optimization to minimize the daily electricity cost. This paper analyzes the cost-saving effects by the each operating time-interval in case that the RFB ESS is optimally scheduled for peak shaving and load leveling.

Development of Energy Management System for Micro-Grid with Photovoltaic and Battery system

  • Asghar, Furqan;Talha, Muhammad;Kim, Sung-Ho
    • 한국지능시스템학회논문지
    • /
    • 제25권3호
    • /
    • pp.299-305
    • /
    • 2015
  • Global environmental concerns and the ever increasing need of energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Distributed electricity generation is a suitable option for sustainable development thanks to the load management benefits and the opportunity to provide electricity to remote areas. Solar energy being easy to harness, non-polluting and never ending is one of the best renewable energy sources for electricity generation in present and future time. Due to the random and intermittent nature of solar source, PV plants require the adoption of an energy storage and management system to compensate fluctuations and to meet the energy demand during night hours. This paper presents an efficient, economic and technical model for the design of a MPPT based grid connected PV with battery storage and management system. This system satisfies the energy demand through the PV based battery energy storage system. The aim is to present PV-BES system design and management strategy to maximize the system performance and economic profitability. PV-BES (photovoltaic based battery energy storage) system is operated in different modes to verify the system feasibility. In case of excess energy (mode 1), Li-ion batteries are charged using CC-CV mechanism effectively controlled by fuzzy logic based PID control system whereas during the time of insufficient power from PV system (mode 2), batteries are used as backup to compensate the power shortage at load and likewise other modes for different scenarios. This operational mode change in PV-BES system is implemented by State flow chart technique based on SOC, DC bus voltages and solar Irradiance. Performance of the proposed PV-BES system is verified by some simulations study. Simulation results showed that proposed system can overcome the disturbance of external environmental changes, and controls the energy flow in efficient and economical way.

THE SOC ESTIMATION OF THE LEAD-ACID BATTERY USING KALMAN FILTER

  • JEON, YONGHO
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.851-858
    • /
    • 2021
  • In general, secondary batteries are widely used as an electric energy source. Among them, the state of energy storage of mobile devices is very important information. As a method of estimating a state, there is a method of estimating the state by integrating the current according to an energy storage state of a battery, and a method of designing a state estimator by measuring a voltage and estimating a charge amount based on a battery model. In this study, we designed the state estimator using an extended Kalman filter to increase the precision of the state estimation of the charge amount by including the error of the system model and having the robustness to the noise.

차세대 이차전지용 아연 이온 이차전지 소재 연구 개발 동향 (Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie)

  • 조정근;김재국
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.312-330
    • /
    • 2018
  • Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.

실내 에너지저장시스템 공조시스템의 열적 거동에 관한 연구 (Thermal Behavior of Air Conditioning System in an Indoor Energy Storage System)

  • 김준영;최낙삼;김진택
    • 신재생에너지
    • /
    • 제17권1호
    • /
    • pp.33-39
    • /
    • 2021
  • The energy use is increasing as the quality of human life improves. and research on the efficient use of energy in ESS (Energy Storage System) is ongoing. An air conditioner is required for the efficient use of an ESS, as are data on the distribution of the temperature of the latter based on the capacity of the air conditioner. In the absence of an air conditioner, the battery of the ESS reaches its maximum temperature of 40℃ after 2 h. When an air conditioner is present, the temperature of the battery stabilizes as the capacity of the former increases.

태양광 발전을 이용한 전기자동차 배터리 충전 및 공급시스템에 관한 연구 (A Study on Battery Charging and Supply System of Electric Vehicle Using Photovoltaic Generation)

  • 최회균
    • 한국기후변화학회지
    • /
    • 제8권3호
    • /
    • pp.265-273
    • /
    • 2017
  • Recently the Paris Climate Change Accord has been officially put into effect, making global efforts to implement Greenhouse Gas (GHG) reductions, and also International environmental regulations in the automotive sector will be further strengthened. The electric vehicle, which minimizes the particulate matter generated by existing internal combustion engine automobiles, is evaluated as a representative eco-friendly automobile. However, charging the battery of an electric vehicle is not fully environment-friendly if it is fueled by electricity that is being generated by fossil fuels as an energy source. The energy generated by the photovoltaic power generation system, which is an infinite clean energy, can be used to charge an electric vehicle's battery. Currently, shortage of charging facilities, time of charging, and high battery prices are the problem of activating the supply of electric vehicles. This study is to build a conjunction between the EVBSS (Electric Vehicle Battery Supply System) and ESS (Energy Storage System), which can quickly supply the photovoltaic charged battery to the required demand. If the charged battery in the Battery Swapping Station (BSS) is swapped swiftly, it will dramatically shorten the waiting time for charging the battery. As a result, if the battery is rented when it is needed, electric vehicles can be sold without the cost of a battery, which accounts for a large portion of the total cost, then the supply of electric vehicles are expected to expand. Furthermore, it will be an important alternative to maneuver climate change by minimizing GHG emissions from internal combustion engine vehicles.

고전압 시스템을 위한 초고용량 축전지 모듈 특성 연구 (A Study on the Characteristics of Supercapacitpr Module for High Voltage System)

  • 김병우;허진
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1237-1241
    • /
    • 2010
  • Supercapacitors as novel energy storage devices between conventional capacitors and batteries, with more specific capacitance and energy densities than conventional capacitors and more power densities than batteries are to be used in many fields. Supercapacitor is regarded as one of good alternatives for meeting the requirement of market with excellent power performance and high cyclability. This paper deals with the characteristics of charge and discharge behavior of supercapacitor module for developing 42V hybrid energy storage system with lead acid battery and supercapacitor in order to adopt to 42V power net for vehicle. An analysis performed in this paper indicates that supercapacitor storage system may be cost effective for high cycle applications.

What Drives Residential Consumers Willingness to Use Green Technology Applications in Malaysia?

  • OTHMAN, Nor Salwati;HARUN, Nor Hamisham;ISHAK, Izzaamirah
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권10호
    • /
    • pp.269-283
    • /
    • 2021
  • The government policies and initiatives to guarantee sustainable energy and clean environmental conditions contributed to the introduction of green technology electricity appliances in the market. This study sought to determine the physiological and socio-economics-demographic factors driving residential electricity consumers to use green technology electricity appliances, mainly solar PV, smart meter, electric vehicle, and battery storage technology. By understanding consumer intention, the investors of solar PV, battery storage, electric vehicle, and smart meter can estimate the demand and upscale the market for the corresponding products. For that purpose, the intention to use the solar PV, smart meter, electric vehicle, and battery storage function is developed by utilizing the combination of the theory of planned behavior, technology acceptance, and reasoning action. A reliable and valid structured online questionnaire and stepwise multiple regression are used to identify the possible factors that drive consumer behavior intention. The results show that the social influence, knowledge on RE, and perceived price significantly influence residential consumers' willingness to adopt the technologies offered. The findings of this study suggest that the involvement of NGOs, public figures, and citizens' cooperation are all necessary to spread information about the government's objectives and support Malaysia's present energy and environmental policies.