Browse > Article
http://dx.doi.org/10.31613/ceramist.2018.21.4.02

Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie  

Jo, Jeonggeun (Chonnam National University)
Kim, Jaekook (Chonnam National University)
Publication Information
Ceramist / v.21, no.4, 2018 , pp. 312-330 More about this Journal
Abstract
Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.
Keywords
Energy storage system; Next generation batteries; Polyvalent ions; Zn-ion batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Kundu, S.H. Vajargah, L. Wan, B. Adams, D. Prendergast, L.F. Nazar, "Aqueous vs. non-aqueous Zn-ion batteries: consequences of the desolvation penalty at the interface" Energy Environ. Sci., 11(4), 881 (2018)   DOI
2 B. Sambandam, V. Soundharrajan, S.J. Kim, M.H. Alfaruqi, J.G. Jo, S.H. Kim, V. Mathew, Y.K. Sun, J. Kim, "Aqueous rechargeable Zn-ion batteries: An imperishable and high-energy $Zn_2V_2O_7$ nanowire cathode through intercalation regulation" J. Mater. Chem. A, 5, 3850-3856 (2018)
3 C. Xia, J. Guo, Y. Lei, "Rechargeable aqueous zincion battery based on porous framework zinc pyro vanadate intercalation cathode" Adv. Mater., 30, 1705580 (2018)   DOI
4 V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, "Challenges in the development of advanced Li-ion batteries: A review" Energy Environ. Sci., 4, 3243-3262 (2011)   DOI
5 J.W. Fergus, "Developments in cathode materials for lithium ion batteries" J. Power Sources, 195, 939-954 (2010)   DOI
6 B. Dunn, H. Kamath, J.M. Tarascon, "Electrical energy storage for the grid: A battery of choices" Science, 334, 928-93 5(2011)   DOI
7 Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen "Thermal runaway caused fire and explosion of lithium ion battery" J. Power Sources, 208, 210-224 (2012)   DOI
8 J. Wen, Y. Yu, C. Chen, "A review on lithium-ion batteries safety issues: Existing problems and possible solutions" Mater. Express, 2, 197-212 (2012)   DOI
9 R.Y. Wang, C.D. Wessells, R.A. Huggins, Y. Cui, "Highly reversible open framework nanoscale electrodes for divalent ion batteries" Nano Lett., 13, 5748-5752 (2013)   DOI
10 S. Liu, G.L. Pan, G. Li., X.P. Gao, "Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries" J. Mater. Chem. A, 3, 959-962 (2015)   DOI
11 C. Xu, B. Li, H. Du, F. Kang, "Energetic zinc ion chemistry: The rechargeable zinc ion battery" Angew. Chem. Int. Ed., 51, 933-935 (2012)   DOI
12 L. Zhang, L. Chen, X. Zhou, Z. Liu "Morphologydependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery" Sci. Rep., 5, 18263 (2015)   DOI
13 P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, "Layered $VS_2$ nanosheet-based aqueous Zn ion battery cathode" Adv. Energy Mater., 7, 1601920 (2017)   DOI
14 G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, "Towards polyvalent ion batteries: A zincion battery based on NASICON structured $Na_3V_2(PO_4)_3$" Nano Energy, 25, 211-217 (2016)   DOI
15 L. Zhang, L. Chen, X. Zhou, Z. Liu, "Towards highvoltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system" Adv. Energy. Mater., 5, 1400930 (2015)   DOI
16 R. Trocoli, F.L. Mantia, "An aqueous zinc-ion battery based on copper hexacyanoferrate" ChemSusChem, 8, 481-485 (2015)   DOI
17 Z. Jia, B. Wang, Y. Wang, "Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries" Mater. Chem. Phys., 149-150, 601-606 (2015)   DOI
18 A.R. Mainar, E. Iruin, L.C. Colmenares, A. Kvasha, I. Meatza, M. Bengoechea, O. Leonet, I. Boyano, C. Zhang, J.A. Blazquez, "An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc" J. Energy Storage, 15, 304-328 (2018)   DOI
19 G. Kasiri, R. Trocoli, A.B. Hashemi, F.L. Mantia, "An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries" Electrochim. Acta, 222, 74-83 (2016)   DOI
20 A . Khor, P. Leung, M. R. Mohamed, C. Flox, Q. Xu , L. An, R.G.A. Wills, J. R. Morante, A. A. Shah, "Review of zinc-based hybrid flow batteries: From fundamentals to application" Mater. Today Energy, 8, 80-108 (2018)   DOI
21 K. Kordesch, P.A. Marsal, L.F. Urry, "Dry cell" US Patent 2960558A (1957)
22 W.C. Vosburgh, "The manganese dioxide electrode" J, Electrochem, Soc., 106, 839-845 (1959)   DOI
23 A. Kozawa, J.F. Yeager, "The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte" J. Electrochem. Soc., 112, 959-963 (1965)   DOI
24 K.J. Vetter, "A general thermodynamic theory of the potential of passive electrodes and its influence on passive corrosion" J. Electrochem. Soc., 110, 597-605 (1963)   DOI
25 S. Deravaj, N. Munichandraiah, "Effect of crystallographic structure of $MnO_2$ on its electrochemical capacitance properties" J. Phys. Chem. C, 112, 4406-4417 (2008)   DOI
26 C. Xu, Y. Chen, S. Shi, J. Li, F. Kang, D. Su, "Secondary batteries with multivalent ions for energy storage" Sci. Rep., 5, 14120-14128 (2015)   DOI
27 M.H. Alfaruqi, J.H. Gim, S.J. Kim, J.J. Song, J.G. Jo, S.H. Kim, V. Mathew, J. Kim, "Enhanced reversible divalent zinc storage in a structurally stable ${\alpha}-MnO_2$ nanorod electrode" J. Power Sources, 288, 320-327 (2015)   DOI
28 J. Huang, Z. Guo, Y. Ma, D. Bin, Y. Wang, Y. Xia, "Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes" Small Methods, 1800272 (2018)
29 Y. Li, H. Dai, "Recent advances in Zinc-air batteries" Chem. Soc. Rev., 43(15), 5257-5275   DOI
30 S.H. Lee, C.W. Yi, K. Kim, "Characteristics and Electrochemical performance of the $TiO_2$-coated ZnO anode for Ni-Zn secondary batteries" J. Phys. Chem. C, 115(5), 2572-2577 (2011)   DOI
31 J. F. Parker, C. N. Chervin, I. R. Pala, M. Machler, M. F. Burz, J. W. Long, D. R. Rolison, "Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion" Science, 356, 415-418 (2017)   DOI
32 H. Li, C. Xu, C. Han, Y. Chen, C. Wei, B. Li, F. Kang, "Enhancement on Cycle Performance of Zn Anodes by Activated Carbon Modification for Neutral Rechargeable Zinc Ion Batteries" J. Electrochem. Soc., 162, A1439 (2015)   DOI
33 M.S. Chae, J.W. Heo, S.C. Lim, S.T. Hong, "Electrochemical zinc-ion intercalation properties and crystal structures of $ZnMo_6S_8\;and\;Zn_2Mo_6S_8$ chevrel phases in aqueous electrolytes" Inorg. Chem., 55, 3294-3301(2016)   DOI
34 W. Kaveevivitchai, A. Manthiram, "High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and non-aqueous Zn-ion batteries" J. Mater. Chem. A, 4, 18737-18741 (2016)   DOI
35 M.H. Alfaruqi, J.H. Gim, S.J. Kim, J.J. Song, D.T. Pham, J.G. Jo, Z. Xiu, V. Mathew, J. Kim, "A layered ${\delta}-MnO_2$ nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications" Electrochem. Commun., 60, 121-125 (2015)   DOI
36 B.E. Lee, H.R. Lee, H.S. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, "Elucidating the intercalation mechanism of zinc ions into ${\alpha}-MnO_2$ for rechargeable zinc batteries" Chem. Commun., 51, 9265-9268 (2015)   DOI
37 B.E. Lee, C.S. Yoon, H.R. Lee, K.Y. Chung, B.W. Cho, S.H. Oh, "Electro chemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide" Sci. Rep., 4, 6066 (2014)
38 B.E. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, "Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries" ChemSusChem, 9, 1-10 (2016)   DOI
39 H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C.M. Wang, J. Yang, X. Li, P. Bhattacharya, K.T. Mueller, J. Liu, "Reversible aqueous zinc/manganese oxide energy storage from conversion reactions" Nat. Energy, 1, 16039 (2016)   DOI
40 M.H. Alfaruqi, V. Mathew, J.H. Gim, S.J. Kim, J.J. Song, J.P. Baboo, S.H. Choi, J. Kim, "Electrochemically induced structural transformation in a ${\gamma}-MnO_2$ cathode of a high capacity zinc-ion battery system" Chem. Mater., 27, 3609-3620 (2015)   DOI
41 N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, "Rechargeable aqueous zincmanganese dioxide batteries with high energy and power densities" Nat. Commun., 8, 405 (2017)   DOI
42 M.H. Alfaruqi, S. Islam, V. Mathew, J.J. Song, S.J. Kim, D.T. Pham, J.J. Jo, S.H. Kim, J.P. Baboo, Z. Xiu, J. Kim, "Ambient redox synthesis of vanadiumdoped manganese dioxide nanoparticles and their enhanced zinc storage properties" Appl. Surf. Sci., 404, 435-442 (2017)   DOI
43 S. Islam, M.H. Alfaruqi, J.J. Song, S.J. Kim, D.T. Pham, J.G. Jo, S.H. Kim, V. Mathew, J.P. Baboo, Z. Xiu, J. Kim "Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications" J. Energy Chem., 26, 815-819 (2017)   DOI
44 C. Yuan, Y. Zhang, Y. Pan, X. Liu, G. Wang, D. Cao, "Investigation of the intercalation of polyvalent cations ($Mg^{2+},\;Zn^{2+}$) into $\lambda-MnO_2$ for rechargeable aqueous battery" Electrochim. Acta, 116, 404-412 (2014)   DOI
45 N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, "Cation-deficient spinel $ZnMn_2O_4\;cathode\;in\;Zn(CF_3SO_3)_2$ electrolyte for rechargeable aqueous Zn-ion battery" J. Am. Chem. Soc., 138, 12894-12901 (2016)   DOI
46 W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Cao, F. Han, R. Hu, M. Zhu, C. Wang, "$Zn/MnO_2$ battery chemistry with $H^{+}\;and\;Zn^{2+}$ co-insertion" J. Am. Chem. Soc., 13, 9775-9778 (2017)
47 B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, "Graphene scroll-coated ${\alpha}-MnO_2$ nanowires as high-performance cathode materials for aqueous Zn-ion battery" Small, 14(13), 1703850 (2018)   DOI
48 J.H. Lee, J.B. Ju, W.I. Cho, B.W. Cho, S.H. Oh, "Todorokite-type $MnO_2$ as a zinc-ion intercalating material". Electrochim. Acta, 112, 138-143 (2013)   DOI
49 J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, "Electrochemically induced spinel-layered phase transition of $Mn_3O_4$ in high performance neutral aqueous rechargeable zinc battery" Electrochim. Acta, 259, 170-178 (2018)   DOI
50 B. Jiang, C. Xu, C. Wu, L. Dong, J. Li, F. Kang, "Manganese Sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life" Electrochim. Acta, 229, 422-428 (2017)   DOI
51 H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Wang, Z. Liu, Z. Tang, Y. Wang, F. Kang, B. Li, C. Zhi, "An extremely safe and wearable solidstate zinc ion battery based on a hierarchical structured polymer electrolyte" Energy Environ. Sci., 11(4), 941-951 (2018)   DOI
52 C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, "Highly stable aqueous zinc-ion storage using layered calcium vanadium oxide bronze cathode" Angew. Chem. Int. Ed., 57, 1 - 7 (2018)   DOI
53 Y. Zeng, Y. Zhang, Y. Meng, M. Yu, J. Yi, Y. Wu, X. Lu, Y. Tong, "Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solidstate $Zn-MnO_2$ battery" Adv. Mater., 29, 1700274 (2017)   DOI
54 D. Kundu, D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, "A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode" Nat. Energy, 1, 16119 (2016)   DOI
55 P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, "Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries" Adv. Energy Mater., 8(10), 1702463 (2018)   DOI
56 P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan, J. Li, W. Luo, W. Yang, W. Zhang, L. Zhou, Z. Zhou, L. Mai, "Highly durable $Na_2V_6O_{16}{\cdot}1.63H_2O$ nanowire cathode for aqueous zinc-ion battery" Nano Lett., 18, 1758-1763 (2018)   DOI
57 M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K.T. Mueller, L. Mai, J. Liu, J. Yang, "Water-lubricated intercalation in $V_2O_5{\cdot}nH_2O$ for high-capacity and high-rate aqueous rechargeable zinc batteries" Adv. Mater., 30, 1703725 (2018)   DOI
58 M.H. Alfarugi, V. Mathew, J.J. Song, S.J. Kim, S. Islam, D.T. Pham, J.G. Jo, S.H. Kim, J.P. Baboo, Z. Xiu, K.S. Lee, Y.K. Sun, J. Kim "Electrochemical zinc intercalation in lithium vanadium oxide: A highcapacity zinc-ion battery cathode" Chem. Mater., 29, 1684-1694 (2017)   DOI
59 P. He, Y. Quan, X. Xu, M. Yan, W. Yang, Q. An, L. He, L. Mai, "High-performance aqueous zinc-ion battery based on layered $H_2V_3O_8$ nanowire cathode". Small, 13, 1702551 (2017)   DOI