DOI QR코드

DOI QR Code

Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie

차세대 이차전지용 아연 이온 이차전지 소재 연구 개발 동향

  • Received : 2018.11.21
  • Accepted : 2018.12.17
  • Published : 2018.12.30

Abstract

Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.

Keywords

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, "Challenges in the development of advanced Li-ion batteries: A review" Energy Environ. Sci., 4, 3243-3262 (2011) https://doi.org/10.1039/c1ee01598b
  2. J.W. Fergus, "Developments in cathode materials for lithium ion batteries" J. Power Sources, 195, 939-954 (2010) https://doi.org/10.1016/j.jpowsour.2009.08.089
  3. B. Dunn, H. Kamath, J.M. Tarascon, "Electrical energy storage for the grid: A battery of choices" Science, 334, 928-93 5(2011) https://doi.org/10.1126/science.1212741
  4. Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen "Thermal runaway caused fire and explosion of lithium ion battery" J. Power Sources, 208, 210-224 (2012) https://doi.org/10.1016/j.jpowsour.2012.02.038
  5. J. Wen, Y. Yu, C. Chen, "A review on lithium-ion batteries safety issues: Existing problems and possible solutions" Mater. Express, 2, 197-212 (2012) https://doi.org/10.1166/mex.2012.1075
  6. R.Y. Wang, C.D. Wessells, R.A. Huggins, Y. Cui, "Highly reversible open framework nanoscale electrodes for divalent ion batteries" Nano Lett., 13, 5748-5752 (2013) https://doi.org/10.1021/nl403669a
  7. S. Liu, G.L. Pan, G. Li., X.P. Gao, "Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries" J. Mater. Chem. A, 3, 959-962 (2015) https://doi.org/10.1039/C4TA04644G
  8. C. Xu, B. Li, H. Du, F. Kang, "Energetic zinc ion chemistry: The rechargeable zinc ion battery" Angew. Chem. Int. Ed., 51, 933-935 (2012) https://doi.org/10.1002/anie.201106307
  9. A.R. Mainar, E. Iruin, L.C. Colmenares, A. Kvasha, I. Meatza, M. Bengoechea, O. Leonet, I. Boyano, C. Zhang, J.A. Blazquez, "An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc" J. Energy Storage, 15, 304-328 (2018) https://doi.org/10.1016/j.est.2017.12.004
  10. K. Kordesch, P.A. Marsal, L.F. Urry, "Dry cell" US Patent 2960558A (1957)
  11. W.C. Vosburgh, "The manganese dioxide electrode" J, Electrochem, Soc., 106, 839-845 (1959) https://doi.org/10.1149/1.2427508
  12. A. Kozawa, J.F. Yeager, "The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte" J. Electrochem. Soc., 112, 959-963 (1965) https://doi.org/10.1149/1.2423350
  13. K.J. Vetter, "A general thermodynamic theory of the potential of passive electrodes and its influence on passive corrosion" J. Electrochem. Soc., 110, 597-605 (1963) https://doi.org/10.1149/1.2425837
  14. S. Deravaj, N. Munichandraiah, "Effect of crystallographic structure of $MnO_2$ on its electrochemical capacitance properties" J. Phys. Chem. C, 112, 4406-4417 (2008) https://doi.org/10.1021/jp7108785
  15. C. Xu, Y. Chen, S. Shi, J. Li, F. Kang, D. Su, "Secondary batteries with multivalent ions for energy storage" Sci. Rep., 5, 14120-14128 (2015) https://doi.org/10.1038/srep14120
  16. M.H. Alfaruqi, J.H. Gim, S.J. Kim, J.J. Song, J.G. Jo, S.H. Kim, V. Mathew, J. Kim, "Enhanced reversible divalent zinc storage in a structurally stable ${\alpha}-MnO_2$ nanorod electrode" J. Power Sources, 288, 320-327 (2015) https://doi.org/10.1016/j.jpowsour.2015.04.140
  17. B.E. Lee, H.R. Lee, H.S. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, "Elucidating the intercalation mechanism of zinc ions into ${\alpha}-MnO_2$ for rechargeable zinc batteries" Chem. Commun., 51, 9265-9268 (2015) https://doi.org/10.1039/C5CC02585K
  18. B.E. Lee, C.S. Yoon, H.R. Lee, K.Y. Chung, B.W. Cho, S.H. Oh, "Electro chemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide" Sci. Rep., 4, 6066 (2014)
  19. B.E. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, "Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries" ChemSusChem, 9, 1-10 (2016) https://doi.org/10.1002/cssc.201501673
  20. H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C.M. Wang, J. Yang, X. Li, P. Bhattacharya, K.T. Mueller, J. Liu, "Reversible aqueous zinc/manganese oxide energy storage from conversion reactions" Nat. Energy, 1, 16039 (2016) https://doi.org/10.1038/nenergy.2016.39
  21. M.H. Alfaruqi, V. Mathew, J.H. Gim, S.J. Kim, J.J. Song, J.P. Baboo, S.H. Choi, J. Kim, "Electrochemically induced structural transformation in a ${\gamma}-MnO_2$ cathode of a high capacity zinc-ion battery system" Chem. Mater., 27, 3609-3620 (2015) https://doi.org/10.1021/cm504717p
  22. M.H. Alfaruqi, J.H. Gim, S.J. Kim, J.J. Song, D.T. Pham, J.G. Jo, Z. Xiu, V. Mathew, J. Kim, "A layered ${\delta}-MnO_2$ nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications" Electrochem. Commun., 60, 121-125 (2015) https://doi.org/10.1016/j.elecom.2015.08.019
  23. N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, "Rechargeable aqueous zincmanganese dioxide batteries with high energy and power densities" Nat. Commun., 8, 405 (2017) https://doi.org/10.1038/s41467-017-00467-x
  24. S. Islam, M.H. Alfaruqi, J.J. Song, S.J. Kim, D.T. Pham, J.G. Jo, S.H. Kim, V. Mathew, J.P. Baboo, Z. Xiu, J. Kim "Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications" J. Energy Chem., 26, 815-819 (2017) https://doi.org/10.1016/j.jechem.2017.04.002
  25. C. Yuan, Y. Zhang, Y. Pan, X. Liu, G. Wang, D. Cao, "Investigation of the intercalation of polyvalent cations ($Mg^{2+},\;Zn^{2+}$) into $\lambda-MnO_2$ for rechargeable aqueous battery" Electrochim. Acta, 116, 404-412 (2014) https://doi.org/10.1016/j.electacta.2013.11.090
  26. N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, "Cation-deficient spinel $ZnMn_2O_4\;cathode\;in\;Zn(CF_3SO_3)_2$ electrolyte for rechargeable aqueous Zn-ion battery" J. Am. Chem. Soc., 138, 12894-12901 (2016) https://doi.org/10.1021/jacs.6b05958
  27. W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Cao, F. Han, R. Hu, M. Zhu, C. Wang, "$Zn/MnO_2$ battery chemistry with $H^{+}\;and\;Zn^{2+}$ co-insertion" J. Am. Chem. Soc., 13, 9775-9778 (2017)
  28. B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, "Graphene scroll-coated ${\alpha}-MnO_2$ nanowires as high-performance cathode materials for aqueous Zn-ion battery" Small, 14(13), 1703850 (2018) https://doi.org/10.1002/smll.201703850
  29. M.H. Alfaruqi, S. Islam, V. Mathew, J.J. Song, S.J. Kim, D.T. Pham, J.J. Jo, S.H. Kim, J.P. Baboo, Z. Xiu, J. Kim, "Ambient redox synthesis of vanadiumdoped manganese dioxide nanoparticles and their enhanced zinc storage properties" Appl. Surf. Sci., 404, 435-442 (2017) https://doi.org/10.1016/j.apsusc.2017.02.009
  30. J.H. Lee, J.B. Ju, W.I. Cho, B.W. Cho, S.H. Oh, "Todorokite-type $MnO_2$ as a zinc-ion intercalating material". Electrochim. Acta, 112, 138-143 (2013) https://doi.org/10.1016/j.electacta.2013.08.136
  31. B. Jiang, C. Xu, C. Wu, L. Dong, J. Li, F. Kang, "Manganese Sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life" Electrochim. Acta, 229, 422-428 (2017) https://doi.org/10.1016/j.electacta.2017.01.163
  32. J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, "Electrochemically induced spinel-layered phase transition of $Mn_3O_4$ in high performance neutral aqueous rechargeable zinc battery" Electrochim. Acta, 259, 170-178 (2018) https://doi.org/10.1016/j.electacta.2017.10.166
  33. H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Wang, Z. Liu, Z. Tang, Y. Wang, F. Kang, B. Li, C. Zhi, "An extremely safe and wearable solidstate zinc ion battery based on a hierarchical structured polymer electrolyte" Energy Environ. Sci., 11(4), 941-951 (2018) https://doi.org/10.1039/C7EE03232C
  34. Y. Zeng, Y. Zhang, Y. Meng, M. Yu, J. Yi, Y. Wu, X. Lu, Y. Tong, "Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solidstate $Zn-MnO_2$ battery" Adv. Mater., 29, 1700274 (2017) https://doi.org/10.1002/adma.201700274
  35. D. Kundu, D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, "A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode" Nat. Energy, 1, 16119 (2016) https://doi.org/10.1038/nenergy.2016.119
  36. P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, "Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries" Adv. Energy Mater., 8(10), 1702463 (2018) https://doi.org/10.1002/aenm.201702463
  37. C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, "Highly stable aqueous zinc-ion storage using layered calcium vanadium oxide bronze cathode" Angew. Chem. Int. Ed., 57, 1 - 7 (2018) https://doi.org/10.1002/anie.201712460
  38. M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K.T. Mueller, L. Mai, J. Liu, J. Yang, "Water-lubricated intercalation in $V_2O_5{\cdot}nH_2O$ for high-capacity and high-rate aqueous rechargeable zinc batteries" Adv. Mater., 30, 1703725 (2018) https://doi.org/10.1002/adma.201703725
  39. M.H. Alfarugi, V. Mathew, J.J. Song, S.J. Kim, S. Islam, D.T. Pham, J.G. Jo, S.H. Kim, J.P. Baboo, Z. Xiu, K.S. Lee, Y.K. Sun, J. Kim "Electrochemical zinc intercalation in lithium vanadium oxide: A highcapacity zinc-ion battery cathode" Chem. Mater., 29, 1684-1694 (2017) https://doi.org/10.1021/acs.chemmater.6b05092
  40. P. He, Y. Quan, X. Xu, M. Yan, W. Yang, Q. An, L. He, L. Mai, "High-performance aqueous zinc-ion battery based on layered $H_2V_3O_8$ nanowire cathode". Small, 13, 1702551 (2017) https://doi.org/10.1002/smll.201702551
  41. P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan, J. Li, W. Luo, W. Yang, W. Zhang, L. Zhou, Z. Zhou, L. Mai, "Highly durable $Na_2V_6O_{16}{\cdot}1.63H_2O$ nanowire cathode for aqueous zinc-ion battery" Nano Lett., 18, 1758-1763 (2018) https://doi.org/10.1021/acs.nanolett.7b04889
  42. D. Kundu, S.H. Vajargah, L. Wan, B. Adams, D. Prendergast, L.F. Nazar, "Aqueous vs. non-aqueous Zn-ion batteries: consequences of the desolvation penalty at the interface" Energy Environ. Sci., 11(4), 881 (2018) https://doi.org/10.1039/C8EE00378E
  43. B. Sambandam, V. Soundharrajan, S.J. Kim, M.H. Alfaruqi, J.G. Jo, S.H. Kim, V. Mathew, Y.K. Sun, J. Kim, "Aqueous rechargeable Zn-ion batteries: An imperishable and high-energy $Zn_2V_2O_7$ nanowire cathode through intercalation regulation" J. Mater. Chem. A, 5, 3850-3856 (2018)
  44. C. Xia, J. Guo, Y. Lei, "Rechargeable aqueous zincion battery based on porous framework zinc pyro vanadate intercalation cathode" Adv. Mater., 30, 1705580 (2018) https://doi.org/10.1002/adma.201705580
  45. P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, "Layered $VS_2$ nanosheet-based aqueous Zn ion battery cathode" Adv. Energy Mater., 7, 1601920 (2017) https://doi.org/10.1002/aenm.201601920
  46. G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, "Towards polyvalent ion batteries: A zincion battery based on NASICON structured $Na_3V_2(PO_4)_3$" Nano Energy, 25, 211-217 (2016) https://doi.org/10.1016/j.nanoen.2016.04.051
  47. L. Zhang, L. Chen, X. Zhou, Z. Liu, "Towards highvoltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system" Adv. Energy. Mater., 5, 1400930 (2015) https://doi.org/10.1002/aenm.201400930
  48. L. Zhang, L. Chen, X. Zhou, Z. Liu "Morphologydependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery" Sci. Rep., 5, 18263 (2015) https://doi.org/10.1038/srep18263
  49. R. Trocoli, F.L. Mantia, "An aqueous zinc-ion battery based on copper hexacyanoferrate" ChemSusChem, 8, 481-485 (2015) https://doi.org/10.1002/cssc.201403143
  50. Z. Jia, B. Wang, Y. Wang, "Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries" Mater. Chem. Phys., 149-150, 601-606 (2015) https://doi.org/10.1016/j.matchemphys.2014.11.014
  51. G. Kasiri, R. Trocoli, A.B. Hashemi, F.L. Mantia, "An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries" Electrochim. Acta, 222, 74-83 (2016) https://doi.org/10.1016/j.electacta.2016.10.155
  52. A . Khor, P. Leung, M. R. Mohamed, C. Flox, Q. Xu , L. An, R.G.A. Wills, J. R. Morante, A. A. Shah, "Review of zinc-based hybrid flow batteries: From fundamentals to application" Mater. Today Energy, 8, 80-108 (2018) https://doi.org/10.1016/j.mtener.2017.12.012
  53. Y. Li, H. Dai, "Recent advances in Zinc-air batteries" Chem. Soc. Rev., 43(15), 5257-5275 https://doi.org/10.1039/c4cs00015c
  54. S.H. Lee, C.W. Yi, K. Kim, "Characteristics and Electrochemical performance of the $TiO_2$-coated ZnO anode for Ni-Zn secondary batteries" J. Phys. Chem. C, 115(5), 2572-2577 (2011) https://doi.org/10.1021/jp110308b
  55. J. Huang, Z. Guo, Y. Ma, D. Bin, Y. Wang, Y. Xia, "Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes" Small Methods, 1800272 (2018)
  56. J. F. Parker, C. N. Chervin, I. R. Pala, M. Machler, M. F. Burz, J. W. Long, D. R. Rolison, "Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion" Science, 356, 415-418 (2017) https://doi.org/10.1126/science.aak9991
  57. H. Li, C. Xu, C. Han, Y. Chen, C. Wei, B. Li, F. Kang, "Enhancement on Cycle Performance of Zn Anodes by Activated Carbon Modification for Neutral Rechargeable Zinc Ion Batteries" J. Electrochem. Soc., 162, A1439 (2015) https://doi.org/10.1149/2.0141508jes
  58. M.S. Chae, J.W. Heo, S.C. Lim, S.T. Hong, "Electrochemical zinc-ion intercalation properties and crystal structures of $ZnMo_6S_8\;and\;Zn_2Mo_6S_8$ chevrel phases in aqueous electrolytes" Inorg. Chem., 55, 3294-3301(2016) https://doi.org/10.1021/acs.inorgchem.5b02362
  59. W. Kaveevivitchai, A. Manthiram, "High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and non-aqueous Zn-ion batteries" J. Mater. Chem. A, 4, 18737-18741 (2016) https://doi.org/10.1039/C6TA07747A

Cited by

  1. Review of High Performance Aqueous Rechargeable Batteries Based on Layered Double Hydroxide vol.24, pp.1, 2021, https://doi.org/10.31613/ceramist.2021.24.1.02