• Title/Summary/Keyword: Battery current

Search Result 1,031, Processing Time 0.033 seconds

The Efficient Maintenance System of Lead-acid Battery Based on the Analysis of Charging/Discharging Current (충.방전 전류해석을 통한 납축전지의 효율적인 관리시스템)

  • 박영산;황종구
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.158-169
    • /
    • 2004
  • The efficient maintenance system of lead-acid battery was builted based cm analysis of charging and discharging current. This system was designed for the purpose of protecting the overdischarge of battery. So, We could protect the shortening lifetime of battery. It is checked the charging and discharging current of battery to decide the cut-off point by $\mu$-processor 80c196. Two current sensors were used to sense the current and the $\mu$-processer calculated amount of charging and discharging current of battery. And then display the state of charge.

Design of an Integrated Current-Voltage Charging Compensator for the LLC Resonant Converter-Based Li-ion Battery Charger (LLC 공진형 컨버터 기반 리튬이온 배터리 충전기의 통합 전류-전압 보상기 설계방법 연구)

  • Choi, Yeong-Jun;Choi, See-Young;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.126-133
    • /
    • 2017
  • The conventional battery charger requires two separate voltage and current compensators to achieve constant current and constant-current-charging profile. This compensator configuration leads to an inevitable transient response during the mode change between the constant current and the constant voltage operation. Futhermore, a tedious and complicated design process is required to consider a widely changing battery voltage and the nonlinear electrical properties of Li-ion battery. This study proposes a single integrated voltage-current compensator of the LLC resonant converter for Li-ion battery charger applications to overcome the aforementioned drawbacks. The proposed compensator is designed to provide a smooth and reliable performance during the entire charging process while providing the reduced design efforts and seamless mode transient response. Several experimental results based on a 300 W prototype converter and its theoretical analysis are provided to verify the effectiveness of the proposed compensator.

Experiment and Electro-Thermo-Chemical Modeling on Rapid Resistive Discharge of Large-Capacity Lithium Ion Battery

  • Doh, Chil-Hoon;Ha, Yoon-Cheol;Eom, Seung-Wook;Yu, Jihyun;Choe, Seon-Hwa;Kim, Seog-Whan;Choi, Jae-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.323-338
    • /
    • 2022
  • Heat generation and temperature of a battery is usually presented by an equation of current. This means that we need to adopt time domain calculation to obtain thermal characteristics of the battery. To avoid the complicated calculations using time domain, 'state of charge (SOC)' can be used as an independent variable. A SOC based calculation method is elucidated through the comparison between the calculated results and experimental results together. Experiments are carried for rapid resistive discharge of a large-capacitive lithium secondary battery to evaluate variations of cell potential, current and temperature. Calculations are performed based on open-circuit cell potential (SOC,T), internal resistance (SOC,T) and entropy (SOC) with specific heat capacity.

Study of bidirectional DCDC converter to prevent circulating current between battery packs (배터리 팩 간의 순환전류 방지를 위한 양방향 DCDC 컨버터 연구)

  • Lee, Seunghyun;Joo, Sungjun
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.695-703
    • /
    • 2019
  • In this paper, we propose a method to remove the circulating current which can occur in the parallel connection of the high voltage series connected battery module in the battery pack. The removal way is a method of inserting a module named VVSM (Variable Voltage Variable Module) using bidirectional DCDC converter and supercapacitor in place of one or some of the cascaded battery cells in the battery pack configuration. In this module, it operates like a battery cell that can be controlled at a desired voltage. VVSM is used to match the voltages of the cascaded battery modules very easily. To demonstrate the proposed method, a PSIM simulation for battery model is used. In addition, the module with only the battery cell connected in series and the module with the proposed VVSM are made, and the two modules were connected in parallel to measure the circulating current between the two modules. As a result, it was verified that the proposed method effectively suppressed the circulating current.

Battery Equalization Method for Parallel-connected Cells Using Dynamic Resistance Technique

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.36-38
    • /
    • 2018
  • As the battery capacity requirement increases, battery cells are connected in a parallel configuration. However, the sharing current of each battery cell becomes unequal due to the imbalance between cell's impedance which results the mismatched states of charge (SOC). The conventional fixed-resistance balancing methods have a limitation in battery equalization performance and system efficiency. This paper proposes a battery equalization method based on dynamic resistance technique, which can improve equalization performance and reduce the loss dissipation. Based on the SOC rate of parallel connected battery cells, the switches in the equalization circuit are controlled to change the equivalent series impedance of the parallel branch, which regulates the current flow to maximize SOC utilization. To verify the method, operations of 4 parallel-connected 18650 Li-ion battery cells with 3.7V-2.6Ah individually are simulated on Matlab/Simulink. The results show that the SOCs are balanced within 1% difference with less power dissipation over the conventional method.

  • PDF

A High Efficiency Zero Voltage/Zero Current Transition Converter for Series Connected Battery Cell Equalization (영전압/영전류 스위칭을 이용한 고효율의 직렬 접속 배터리 전압 밸런싱 방법)

  • Kim, Tae-hoon;Park, Nam-Ju;Hyun, Dong-seok;Kim, Rae-young
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.26-27
    • /
    • 2011
  • This paper focuses on the zero-voltage/zero current transition voltage equalization circuit for the series connected battery cell. By adding auxiliary resonant cells at the main switching devices such as MOSFET or IGBT, zero current switching is achieved and turned off loss of switching elements is eliminated and by the voltage/second balancing of the inductor, zero voltage switching can be applied to switching element. Transformer coupling between battery cells and ZVZCT (Zero Voltage Zero Current Transition) switching method allow the fast balancing speed and high frequency operation, which reduces the size and weight of the circuit. The validity of the battery equalization is further verified using simulation involving four lithium-ion battery cell models.

  • PDF

Design Method and Analysis for Current Limit Charger of Battery System for Regulating CDE Power of Satellite

  • Kim, Kyudong
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.74-78
    • /
    • 2020
  • The cooler driver electronics (CDE) for maintaining a low temperature of a satellite payload IR sensor has a compressor with a pulsation current load when in operation. This pulsation current creates a large voltage fluctuation and may negatively affect both the load and regulated bus stability. Thus, a CDE power conditioning system has a battery for use as a buffer that is connected in front of the CDE load line. In this system, a battery charger limiter circuit is required to protect from an over-charge of the battery and power to the load. In this study, an optimal design and parameter selection were developed and simulated.

Capacitor Bank Assisted Battery Fed Boost Converter for Self-electricity-generated Transportation Cart System (자가발전 이동 카트 시스템을 위한 배터리 - 캐패시터 뱅크를 갖는 부스트 컨버터)

  • Kong, Sung-Jae;Yang, Tae-Cheol;Kang, Kyung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A problem exists in the conventional transportation cart applications, in which an external power supply with mechanical contact connection (bus bar connection) is required to drive the motor. Therefore, continuous effort for maintenance is required, aside from the expensive bus bar connector. To solve this problem, a self-electricity-generated transportation cart system without bus bar has recently been introduced. In this system, a battery needs to store the power of the generated wheel, and a boost converter, which converts the low battery voltage to high bus voltage to drive the motor inverter, is necessary. However, since the instantaneous large current required for starting the motor is supplied from the battery, a battery with large size and volume should be adopted to withstand this large current. In this study, a boost converter that can supply a large instantaneous current by using super Capacitor string is proposed. The proposed converter can be realized with a small size and volume compared with the conventional battery-fed boost converter. Operational principles, analysis, and design of the proposed converter are presented, and experimental results are provided to validate the proposed converter.

Study of DC-DC Converter with Continuous output Current for Battery Charger (배터리 충전기를 위한 연속전류를 갖는 DC-DC 컨버터에 관한 연구)

  • Bayasgalan, Bayasgalan;Kim, Hong-Sung;Kim, Young-Sik;Lee, Young-Jin;Zayabaatar, Zayabaatar;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.193-195
    • /
    • 2008
  • This paper proposed dc-dc converter with continuous output current for battery charger. If we charge energy storage device by conventional boost converter, current flows into the discontinuous and as a result reduces the life-time of battery. The output voltage of dc-dc converter should be higher than voltage of across the battery, specially if charging by PV there is a fluctuation of voltage due change of insolation and temperature, therefore will boost and regulate this voltage. The proposal converter includes forward converter and the output voltage of the proposal converter looks like an input voltage and forward output voltage's add. This topology was tested on simulation and experimentation. Simulation and experimentation results indicated that the proposal topology is useful for battery charging because the output current of the converter flows continuously and perfectly.

  • PDF

Power Consumption Analysis and Minimization of Electronic Shelf Label System (전자가격표시시스템의 소모전력 분석 및 최소화 방안)

  • Woo, Rinara;Kim, Jungjoon;Seo, Dae-Wha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.75-80
    • /
    • 2014
  • Energy consumption of sensor nodes is minimized because it has limited energy generator in wireless sensor network. Electronic shelf label system is one of application fields using wireless sensor networks. Battery size of small apparatus for displaying price is restricted. Therefore its current consumption have to be minimized. Furthermore the method for minimization of peak current would be considered because life cycle of coin battery used to display or RF is vulnerable to intensity of drain current. In this paper, we analyze current consumption pattern of low-power electronic shelf label system. Then we propose the method for minimization of current consumption by modification of software and hardware. Current consumption of the system using proposed method are approximately 15 to 20 percent lower than existing system and the life cycle of the system is approximately 10 percent higher than existing system.