• Title/Summary/Keyword: Battery Voltage

Search Result 1,081, Processing Time 0.036 seconds

Study of the Vibration and Shock Isolation for HEV Battery Pack (특수임무 차량 배터리 팩 진동/충격 저감 설계에 대한 연구)

  • Kim, Man-Dal;Jang, Duk-Jin;Lee, Sung-Jun;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.813-820
    • /
    • 2016
  • Hybrid Electric Vehicles (HEVs) are developed to be operated with two kinds of power source (Diesel Engine and Electric Motor with Rechargeable High Voltage Battery Pack). HEVs for military vehicle require high reliability to provide stable powers under serious environment such as vibration and shock. To ensure normal operation of battery pack under serious environment such as vibration and shock, the high voltage battery pack needs to have appropriate dynamic characteristics. This paper presents a design procedure for high voltage battery pack with such characteristics. An isolator design is proposed to reduce vibration and shock. Associated random vibration and shock response of the high voltage battery pack are simulated under conditions suggested by MIL specifications. Its dynamic characteristics and vibration and shock responses are validated with experiments.

Building battery deterioration prediction model using real field data (머신러닝 기법을 이용한 납축전지 열화 예측 모델 개발)

  • Choi, Keunho;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.243-264
    • /
    • 2018
  • Although the worldwide battery market is recently spurring the development of lithium secondary battery, lead acid batteries (rechargeable batteries) which have good-performance and can be reused are consumed in a wide range of industry fields. However, lead-acid batteries have a serious problem in that deterioration of a battery makes progress quickly in the presence of that degradation of only one cell among several cells which is packed in a battery begins. To overcome this problem, previous researches have attempted to identify the mechanism of deterioration of a battery in many ways. However, most of previous researches have used data obtained in a laboratory to analyze the mechanism of deterioration of a battery but not used data obtained in a real world. The usage of real data can increase the feasibility and the applicability of the findings of a research. Therefore, this study aims to develop a model which predicts the battery deterioration using data obtained in real world. To this end, we collected data which presents change of battery state by attaching sensors enabling to monitor the battery condition in real time to dozens of golf carts operated in the real golf field. As a result, total 16,883 samples were obtained. And then, we developed a model which predicts a precursor phenomenon representing deterioration of a battery by analyzing the data collected from the sensors using machine learning techniques. As initial independent variables, we used 1) inbound time of a cart, 2) outbound time of a cart, 3) duration(from outbound time to charge time), 4) charge amount, 5) used amount, 6) charge efficiency, 7) lowest temperature of battery cell 1 to 6, 8) lowest voltage of battery cell 1 to 6, 9) highest voltage of battery cell 1 to 6, 10) voltage of battery cell 1 to 6 at the beginning of operation, 11) voltage of battery cell 1 to 6 at the end of charge, 12) used amount of battery cell 1 to 6 during operation, 13) used amount of battery during operation(Max-Min), 14) duration of battery use, and 15) highest current during operation. Since the values of the independent variables, lowest temperature of battery cell 1 to 6, lowest voltage of battery cell 1 to 6, highest voltage of battery cell 1 to 6, voltage of battery cell 1 to 6 at the beginning of operation, voltage of battery cell 1 to 6 at the end of charge, and used amount of battery cell 1 to 6 during operation are similar to that of each battery cell, we conducted principal component analysis using verimax orthogonal rotation in order to mitigate the multiple collinearity problem. According to the results, we made new variables by averaging the values of independent variables clustered together, and used them as final independent variables instead of origin variables, thereby reducing the dimension. We used decision tree, logistic regression, Bayesian network as algorithms for building prediction models. And also, we built prediction models using the bagging of each of them, the boosting of each of them, and RandomForest. Experimental results show that the prediction model using the bagging of decision tree yields the best accuracy of 89.3923%. This study has some limitations in that the additional variables which affect the deterioration of battery such as weather (temperature, humidity) and driving habits, did not considered, therefore, we would like to consider the them in the future research. However, the battery deterioration prediction model proposed in the present study is expected to enable effective and efficient management of battery used in the real filed by dramatically and to reduce the cost caused by not detecting battery deterioration accordingly.

A Study on the Parameters Estimation for SOC and SOH of the Battery (SOC 및 SOH 추정을 위한 파라미터 추정기법에 관한 연구)

  • Park, Sung-Jun;Song, Gwang-Suk;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.853-863
    • /
    • 2020
  • As the battery ages, the internal resistance of the battery increases, so the loss due to the internal resistance increases at the same charging current, causing the battery temperature to rise, which further accelerates battery aging. Therefore, it is necessary to optimize the charging conditions according to the aging of the battery or the current charge amount, and to accurately estimate this, estimation of the parameters of the equivalent circuit is most important. This paper proposes a new measurement technique that can measure the internal resistance of a battery by analyzing a specific high frequency voltage and current applied to the battery. In addition, in order to test the validity of the proposed measurement technique, the current charging amount was estimated based on the measured internal resistance, and the terminal voltage of the constant current charging mode was automatically set and operated. As a result, good results were obtained regardless of the battery voltage. If this equipment is installed in the charging device, it is believed that it will be of great help in the stability management of the aging reusable battery.

Battery Internal Resistance Measurement System Robust to Charger Harmonic Noise (충전기 고조파 잡음에 강인한 배터리 내부저항 측정 시스템)

  • Lee, Hyung-Kyu;Kim, Gi-Taek
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1129-1135
    • /
    • 2020
  • The effects of battery aging limit the rechargeable capacity, State of Health(SoH). It is very important to estimate the SoH in the battery monitoring system(BMS) and many algorithms of measuring the internal resistance of the battery were proposed. A method is used by applying a current source of a specific frequency to the battery and measuring the voltage response. When charging harmonic noise is generated in the voltage response, it results in poor resistance measurement accuracy. In this paper, a robust battery internal resistance measurement algorithm is proposed to eliminate the effect of charging noise by integrating the current source and voltage response signals for a certain period. It showed excellent accuracy and stable measurement results. Applying to the BMS for uninterruptible power supply, the usefulness of the proposed method is verified.

Optimized Design of Bi-Directional Dual Active Bridge Converter for Low-Voltage Battery Charger

  • Jeong, Dong-Keun;Ryu, Myung-Hyo;Kim, Heung-Geun;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.468-477
    • /
    • 2014
  • This study proposes an optimized design of a dual active bridge converter for a low-voltage charger in a military uninterrupted power supply (UPS) system. The dual active bridge converter is among various bi-directional DC/DC converters that possess a high-efficiency isolated bi-directional converter. In the general design, the zero-voltage switching(ZVS) region is reduced when the battery voltage is high. By contrast, efficiency is low because of high conduction losses when the battery voltage is low. Variable switching frequency is applied to increase the ZVS region and the power conversion efficiency, depending on battery voltage changes. At the same duty, the same power is obtained regardless of the battery voltage using the variable switching frequency. The proposed method is applied to a 5 kW prototype dual active bridge converter, and the experimental results are analyzed and verified.

Individual Charge Equalization Converter with Parallel Primary Winding of Transformer for Series Connected Lithium-Ion Battery Strings in an HEV

  • Kim, Chol-Ho;Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-Hui
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.472-480
    • /
    • 2009
  • In this paper, a charge equalization converter with parallel-connected primary windings of transformers is proposed. The proposed work effectively balances the voltage among Lithium-Ion battery cells despite each battery cell has low voltage gap compared with its state of charge (SOC). The principle of the proposed work is that the equalizing energy from all battery strings moves to the lowest voltage battery through the isolated dc/dc converter controlled by the corresponding solid state relay switch. For this research a prototype of four Lithium-Ion battery cells is optimally designed and implemented, and experimental results show that the proposed method has excellent cell balancing performance.

Improvement of Available Battery Capacity in Electric Vehicles

  • Liu, Yow-Chyi
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.497-506
    • /
    • 2013
  • This paper proposes a new method to improve the available battery capacity in electric vehicles by connecting lead-acid batteries with lithium-ion battery in parallel to supply power. In addition, this method combines the discharge characteristics of batteries to improve their efficiency and lower their cost for electric vehicles. A lithium-ion battery set is used to connect with N sets of lead-acid batteries in parallel. The lead-acid battery supplies the initial power. When the lead-acid battery is discharged by the load current until its output voltage drops to the cut-off voltage, the power management unit controls the lead-acid battery and changes it to discharge continuously with a small current. This discharge can be achieved by connecting the lead-acid battery to a lithium-ion battery in parallel to supply the load power or to discharge its current to another lead-acid or lithium-ion battery. Experimental results demonstrates that the available capacity can be improved by up to 30% of the rated capacity of the lead-acid batteries.

High safety battery management system of DC power source for hybrid vessel (하이브리드 선박 직류전원용 고 안전 BMS)

  • Choi, Jung-Leyl;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.635-641
    • /
    • 2016
  • In order to drive a hybrid propulsion device which combines an engine and an electric propulsion unit, battery packs that contain dozens of unit cells consisting of a lithium-based battery are used to maintain the power source. Therefore, it is necessary to more strictly manage a number of battery cells at any given time. In order to manage battery cells, generally voltage, current, and temperature data under load condition are monitored from a personal computer. Other important elements required to analyze the condition of the battery are the internal resistances that are used to judge its state-of-health (SOH) and the open-circuit voltage (OCV) that is used to check the battery charging state. However, in principle, the internal resistances cannot be measured during operation because the parallel equivalent circuit is composed of internal loss resistances and capacitance. In most energy storage systems, battery management system (BMS) operations are carried out by using data such as voltage, current, and temperature. However, during operation, in the case of unexpected battery cell failure, the output voltage of the power supply can be changed and propulsion of the hybrid vehicle and vessel can be difficult. This paper covers the implementation of a high safety battery management system (HSBMS) that can estimate the OCV while the device is being driven. If a battery cell fails unexpectedly, a DC power supply with lithium iron phosphate can keep providing the load with a constant output voltage using the remainder of the batteries, and it is also possible to estimate the internal resistance.

An Effective Control Scheme for Battery Charger System in Electric Vehicles

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.232-233
    • /
    • 2012
  • This paper presents an effective control scheme for an electric vehicle battery charger where a symmetrical bridgeless power factor-corrected converter and a buck converter are cascaded. Both converters have been popular in industries because of their high efficiency, low cost, and compact size, hence combining these converters makes the overall battery charging system strongly efficient. Moreover, this charger topology can operate at universal input voltage and attain a desired battery current and voltage without ripple. In order to achieve a unity input power factor and zero input current harmonic distortion, the proposed control scheme adopts duty ratio feed-forward control technique in both current and voltage control loop. Additionally, in the current loop, its reference is created by a phase-locked loop (PLL) block, leading to a pure sinusoidal input current although the input voltage waveform is being distorted. The feasibility and practical value of the proposed approach are verified by simulation and experiment with an 110V/60Hz ac line input and 1.5kW-72V dc output of the battery charging system.

  • PDF

Design of an Integrated Current-Voltage Charging Compensator for the LLC Resonant Converter-Based Li-ion Battery Charger (LLC 공진형 컨버터 기반 리튬이온 배터리 충전기의 통합 전류-전압 보상기 설계방법 연구)

  • Choi, Yeong-Jun;Choi, See-Young;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.126-133
    • /
    • 2017
  • The conventional battery charger requires two separate voltage and current compensators to achieve constant current and constant-current-charging profile. This compensator configuration leads to an inevitable transient response during the mode change between the constant current and the constant voltage operation. Futhermore, a tedious and complicated design process is required to consider a widely changing battery voltage and the nonlinear electrical properties of Li-ion battery. This study proposes a single integrated voltage-current compensator of the LLC resonant converter for Li-ion battery charger applications to overcome the aforementioned drawbacks. The proposed compensator is designed to provide a smooth and reliable performance during the entire charging process while providing the reduced design efforts and seamless mode transient response. Several experimental results based on a 300 W prototype converter and its theoretical analysis are provided to verify the effectiveness of the proposed compensator.