• Title/Summary/Keyword: Battery Aging

Search Result 72, Processing Time 0.023 seconds

Current Trend of EV (Electric Vehicle) Waste Battery Diagnosis and Dismantling Technologies and a Suggestion for Future R&D Strategy with Environmental Friendliness (전기차 폐배터리 진단/해체 기술 동향 및 향후 친환경적 개발 전략)

  • Byun, Chaeeun;Seo, Jihyun;Lee, Min kyoung;Keiko, Yamada;Lee, Sang-hun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.3-11
    • /
    • 2022
  • Owing to the increasing demand for electric vehicles (EVs), appropriate management of their waste batteries is required urgently for scrapped vehicles or for addressing battery aging. With respect to technological developments, data-driven diagnosis of waste EV batteries and management technologies have drawn increasing attention. Moreover, robot-based automatic dismantling technologies, which are seemingly interesting, require industrial verifications and linkages with future battery-related database systems. Among these, it is critical to develop and disseminate various advanced battery diagnosis and assessment techniques to improve the efficiency and safety/environment of the recirculation of waste batteries. Incorporation of lithium-related chemical substances in the public pollutant release and transfer register (PRTR) database as well as in-depth risk assessment of gas emissions in waste EV battery combustion and their relevant fire safety are some of the necessary steps. Further research and development thus are needed for optimizing the lifecycle management of waste batteries from various aspects related to data-based diagnosis/classification/disassembly processes as well as reuse/recycling and final disposal. The idea here is that the data should contribute to clean design and manufacturing to reduce the environmental burden and facilitate reuse/recycling in future production of EV batteries. Such optimization should also consider the future technological and market trends.

Robust Active Power Control of a Battery-Supported DSTATCOM to Enhance Wind Generation Power Flow

  • Mahdianpoor, Mohammad;Kiyoumarsi, Arash;Ataei, Mohammad;Hooshmand, Rahmat-Allah
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1357-1368
    • /
    • 2017
  • The lack of controllability over the wind causes fluctuations in the output power of the wind generators (WGs) located at the wind farms. Distribution Static Compensator (DSTATCOM) equipped with Battery Energy Storage System (BESS) can significantly smooth these fluctuations by injecting or absorbing appropriate amount of active power, thus, controlling the power flow of WGs. But because of the component aging and thermal drift, its harmonic filter parameters vary, resulting in performance degradation. In this paper, Quantitative Feedback Theory (QFT) is used as a robust control scheme in order to deactivate the effects of filter parameters variations on the wind power generation power smoothing performance. The proposed robust control strategy of the DSTATCOM is successfully applied to a microgrid, including WGs. The simulation results obviously show that the proposed control technique can effectively smooth the fluctuations in the wind turbines' (WT) output power caused by wind speed variations; taking into account the filter parameters variations (structural parameter uncertainties).

A Study on the Plate for Deep Discharge in Lead Acid Battery (납축전지의 심방전용 극판에 관한 연구)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.197-202
    • /
    • 2014
  • Positive plate was composed of lead hydroxide via reaction between lead oxide and $H_2O$ and lead sulfate was formed of the reaction of lead hydroxide with sulfuric acid. And its density is $3.8g/cm^3$, $4.0g/cm^3$, $4.2g/cm^3$ and $4.4g/cm^3$ by controlling volume of refined water. Curing of positive plate is done for low ($45^{\circ}C$, 40hr, over 95% of relative humidity) & high ($80^{\circ}C$, 40hr, over 95% of relative humidity) temperature, which created 3BS & 4BS active materials. Experimental result of DOD with 100% life cycle test shows that it was not related to the density of active materials but to the low & high temperature aging of active materials. The test makes us to understand that the crystallization which is made by curing of active materials is a more of a main factor than density of active materials under the deep cycle using circumstances. The active materials which were from the high temperature curing are better for deep cycle performance.

A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using a Deep Neural Network (딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법)

  • Khan, Asad;Ko, Young-Hwi;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • For the safe and reliable operation of lithium-ion batteries in electric vehicles or energy storage systems, having accurate information of the battery, such as the state of charge (SOC), is essential. Many different techniques of battery SOC estimation have been developed, such as the Kalman filter. However, when this filter is applied to multiple batteries, it has difficulty maintaining the accuracy of the estimation over all cells owing to the difference in parameter values of each cell. The difference in the parameter of each cell may increase as the operation time accumulates due to aging. In this paper, a novel deep neural network (DNN)-based SOC estimation method for multi-cell application is proposed. In the proposed method, DNN is implemented to determine the nonlinear relationships of the voltage and current at different SOCs and temperatures. In the training, the voltage and current data obtained at different temperatures during charge/discharge cycles are used. After the comprehensive training with the data obtained from the cycle test with a cell, the resulting algorithm is applied to estimate the SOC of other cells. Experimental results show that the mean absolute error of the estimation is 1.213% at 25℃ with the proposed DNN-based SOC estimation method.

Development of a Fast Charging System Utilizing Charge Profile and Cell Balance Control Technology for Large Capacity Lithium-ion Batteries (충전 프로파일 및 셀 밸런스 제어기술을 활용한 대용량 리튬이온 배터리 고속충전시스템 개발)

  • Yunana, Gani Dogara;Ahn, Jae Young;Park, Chan Won
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Lithium-ion cells have become the go-to energy source across all applications; however, dendritic growth remains an issue to tackle. While there have been various research conducted and possible solutions offered, there is yet to be one that efficiently rules out the problem without, however, introducing another. This paper seeks to present a fast charging method and system to which lithium-ion batteries are charged while maintaining their lifetime. In the proposed method, various lithium cells are charged under multiple profiles. The parameters of charge profiles that inflict damage to the cell's electrodes are obtained and used as thresholds. Thus, during charging, voltage, current, and temperature are actively controlled under these thresholds. In this way, dendrite formation suppressed charging is achieved, and battery life is maintained. The fast-charging system designed, comprises of a 1.5kW charger, an inbuilt 600W battery pack, and an intelligent BMS with cell balancing technology. The system was also designed to respond to the aging of the battery to provide adequate threshold values. Among other tests conducted by KCTL, the cycle test result showed a capacity drop of only 0.68% after 500 cycles, thereby proving the life maintaining capability of the proposed method and system.

A Study on Energy Efficiency Improvement of LDC Recycling Load Tester (LDC 재생형 부하 시험기의 효율 개선에 관한 연구)

  • Lee, Choon-il;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.86-92
    • /
    • 2016
  • A high-capacity battery installed in a hybrid vehicle or electric vehicle is used to power, or as a power supply for, electric sub-assemblies. In order to use a high-capacity battery as a power supply for electric sub-assemblies, such as an electronic control unit or for lighting, radio, and navigation, there is a need for a DC converter that changes a high voltage of 240-400V to a low voltage of 12-14V, which is done with a low-voltage DC-DC converter (LDC). An LDC undergoes long-term aging so as to reduce latent defects in the production process. With regard to the usual aging method, an LDC is a DC-DC converter. So, a DC power supply is connected and used as input, and a programmable DC electronic load is the output. For stable operation, a product having a larger capacity by 10% (compared to an LDC) is used, and has a structure where electric power is dissipated into 100% heat. So, there is a problem with volume, based on the use of two pieces of equipment to test the LDC, and another problem based on the generation of heat in the programmable DC electronic load. Hence, this paper suggests a load test method as a way of recycling, where a significant portion of the electricity dissipated as heat in a load tester is returned as input. The method realizes savings of 80% or more in the electricity dissipated as heat through improvement in the efficiency of the recycling load tester.

Inhibition Effects of Chromate, Phosphate, Sulfate, and Borate on Chloride Pitting Corrosion of Al

  • Lee, Ho-Chun;Isaacs, Hugh S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.184-189
    • /
    • 2008
  • Inhibitive effects of chromate, phosphate, sulfate, and borate on chloride pitting corrosion of Al have been investigated using cyclic voltammetry. During the anodic oxide growth, the critical concentration of chloride for pit initiation decreased in the order: chromate > phosphate > sulfate > borate, and the maximum pitting current density increases in the reverse order: chromate < phosphate < sulfate < borate. The decreasing pitting current density was observed in the successive polarization cycles, which was attributed to the aging of Al oxides and field relaxation at oxide/solution interface.

Aging Diagnosis by Analyzing The Electrical Characteristics of Series Hybrid Generator (직렬형 하이브리드용 발전기의 전기적 특성분석 및 열화진단)

  • Lee, Kang-Won;Jang, Se-Ky
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1439-1443
    • /
    • 2011
  • Bimodal Tram is the new conceptual and environmental-friendly public transportation which adopted series hybrid system. The generator driven by CNG engine supplies the electric power to Battery and traction motor. The generator installed on the vehicle will experience the mechanical vibration and electrical transient variation. Those may cause some defects on the generator which will be the hazardous effects to the vehicle. This paper has investigated the possibility to find out some diagnostic features for the defects of generator through the voltage and current generated from it. Those were analyzed in both time and frequency regions. For the next, more works will be needed to complete the purpose of this paper.

  • PDF

Research on DC Power Simulator Considering the Battery Aging Characteristics (배터리 노화 특성을 고려한 DC전원 모의장치에 관한 연구)

  • Lee, Jong-Hak;In, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.409-410
    • /
    • 2016
  • 에너지 저장 시스템(ESS, Energy Storage System)은 태양광(PV), 풍력(WT) 등과 같은 신재생 에너지 출력안정화, 계통 전력품질 개선, 수용가 에너지효율화 등의 분야에 이용되고 있다. 에너지 저장 시스템은 전력변환장치와 에너지 저장장치로 구성되며, 에너지 저장 장치로 배터리를 많이 사용하고 있다. 전력변환장치 및 제어기의 설계 및 검증을 위해서는 배터리를 전력변환장치에 연계하여야 하지만 배터리의 경우 고가에 관리가 어렵기 때문에 일반적으로 DC전원 모의 장치를 이용한다. 또한 배터리를 사용함에 따라 노화가 진행되어 배터리 임피던스 특성이 변화해 에너지 저장 시스템의 성능에 영향을 미칠 수 있다. 본 논문에서는 에너지 저장 시스템용 전력 변환장치 및 제어기의 설계 및 현실적인 검증이 가능한 배터리 노화 특성을 고려한 DC전원 모의장치를 개발하기 위한 연구를 진행하였다.

  • PDF

Fabrication of high-performance carbon nanotube field emitter using Thermal Chemical Vapor Deposition

  • Yu, Wan-Jun;Cho, You-suk;Park, Gyuseok;Kim, D.J.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.43-43
    • /
    • 2003
  • Carbon nanotubes(CNTs) have many application points, which are field emission devices, composites, hydrogen storage, nanodevices, supercapacitor and secondary battery. The most promising application point is emitter tip mays of field emission devices. Furthermore, it may be also useful as a vacuum device for high frequency and high power. But, there are some obstacles to fabricate carbon nanotube field emission device. One is that CNTs grown by CVD method has weak adhesion with substrate and the other is non-uniform length of them. These problems are very crucial in aging property and reliability of device in the field emission.

  • PDF