DOI QR코드

DOI QR Code

Current Trend of EV (Electric Vehicle) Waste Battery Diagnosis and Dismantling Technologies and a Suggestion for Future R&D Strategy with Environmental Friendliness

전기차 폐배터리 진단/해체 기술 동향 및 향후 친환경적 개발 전략

  • Received : 2022.08.02
  • Accepted : 2022.08.09
  • Published : 2022.08.31

Abstract

Owing to the increasing demand for electric vehicles (EVs), appropriate management of their waste batteries is required urgently for scrapped vehicles or for addressing battery aging. With respect to technological developments, data-driven diagnosis of waste EV batteries and management technologies have drawn increasing attention. Moreover, robot-based automatic dismantling technologies, which are seemingly interesting, require industrial verifications and linkages with future battery-related database systems. Among these, it is critical to develop and disseminate various advanced battery diagnosis and assessment techniques to improve the efficiency and safety/environment of the recirculation of waste batteries. Incorporation of lithium-related chemical substances in the public pollutant release and transfer register (PRTR) database as well as in-depth risk assessment of gas emissions in waste EV battery combustion and their relevant fire safety are some of the necessary steps. Further research and development thus are needed for optimizing the lifecycle management of waste batteries from various aspects related to data-based diagnosis/classification/disassembly processes as well as reuse/recycling and final disposal. The idea here is that the data should contribute to clean design and manufacturing to reduce the environmental burden and facilitate reuse/recycling in future production of EV batteries. Such optimization should also consider the future technological and market trends.

전기차 수요의 증가로 향후 폐차 혹은 배터리 노후화로 인한 폐배터리 배출량 급증이 예상됨에 따라 이에 대한 적정 관리가 시급한 실정이다. 기술개발 측면에서는 데이터 기반 진단 등 다양한 폐배터리 진단 및 관리 기술이 주목을 받고 있다. 또한 로봇기반 자동 해체 기술은 산업 현장에서의 Test 검증 및 향후 배터리 관련 데이터베이스와의 연동이 필요한 것으로 보인다. 특히 향후 폐배터리 순환과정에서의 효율화와 동시에 안전성/친환경성 제고를 위한 다양하고 선진적인 배터리 진단 및 평가기법 개발 및 보급이 중요하다. 또한 리튬 관련 화학물질 배출이동에 대한 데이터베이스화와 배터리 연소시 가스유출위험 및 소방안전에 관한 평가 및 대처가 중요할 것으로 보인다. 더 나아가 데이터 기반 진단/분류/해체 과정을 재활용/최종폐기와 연계된 다양한 관점에서의 폐배터리 전주기 관리 최적화 등에 향후 더 많은 연구개발이 필요하다고 판단된다. 그리고 일련의 데이터는 차후 배터리 생산 시 환경적 부담을 감소시키고 재이용/재활용이 원활하도록 청정설계 및 제조에 기여해야 한다. 또한 이러한 최적화는 전기차 배터리의 향후 기술 및 시장 변동을 감안하여 추진되어야 한다.

Keywords

Acknowledgement

본 연구는 대구녹색환경지원센터의 환경기술개발 연구과제 지원으로 수행되었다.

References

  1. Shahjalal, M., Roy, P.K., Shams, T., et al., 2022 : A review on second-life of Li-ion batteries: prospects, challenges, and issues, Energy, 241, 122881.
  2. KDB (Korea Development Bank), 2019 : Current trends of reuse and recycling Industry and technology on waste lithium batteries (translated from Korean), KDB Monthly Report in Nov. 2019.
  3. Samgsung SDI Co., 2022 : URL: https://www.samsungsdi.co.kr/column/all/detail/56455.html?idx=56455 (assessed 12 July 2022).
  4. IIT (Institute for International Trade of Korea), 2022 : Current trends and issues of electric vehicle battery recycling industry: focusing on Chinese cases (translated from Korean), Trade focus in Nov. 2022. URL: https://www.kita.net/cmmrcInfo/internationalTradeStudies/researchReport/focusBriefDetail.do?no=2302&Classification=5 (Accessed 10 July, 2022)
  5. Diekmann, J., Hanisch, C., Frobose, L., et al., 2017 : Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes, J. Electrochem. Soc., 164(1), pp.A6184-A6191. https://doi.org/10.1149/2.0271701jes
  6. Zhu, J., Mathews, I., Ren, D., et al., 2021 : End-of-life or second-life options for retired electric vehicle batteries, Cell Rep. (Physical Science), 2, 100537.
  7. Zhao, G., 2017 : Reuse and Recycling of Lithium-Ion Power Batteries, pp. 37-257. John Wiley & Sons, USA.
  8. DoE (Department of Environment - Korea) : URL: https://www.law.go.kr/LSW/admRulLsInfoP.do?admRulSeq=2100000174875 (assessed 10 July, 2022).
  9. Samsung Securities, 2022 : E-Waste industry: EV battery being the core of E-waste market (translated from Korean), Sector update report on April 12th, 2022. URL : https:// www.samsungpop.com/common.do?cmd=down&saveKey=research.pdf&fileName=2020/2022041207195199K_02_01.pdf&contentType=application/pdf (Accessed 8 August 2022).
  10. Hi Investment&Securities Co., Ltd., 2022 : Li-Cycle (LICY US Equity), Global company brief report on June 6th, 2022. URL : https://m.hi-ib.com:442/upload/R_E14/2022/06/[07065234]_221038.pdf (Accessed 8 August 2022).
  11. Hana Financial Investment Co., Ltd., 2021 : Battery weekly double speed (translated from Korean), Weekly Report on Dec. 13th, 2021. URL : https://www.hanaw.com/download/research/FileServer/WEB/industry/industry/20 21/12/12/Battery_Weekly_2021.12.13.pdf (Accessed 8 August 2022).
  12. Chosun Newspaper, 2022 : URL: https://biz.chosun.com/industry/car/2022/05/06/YOJWBFI.NMBHAJNWYBE5FTNGKXU/ (assessed 10 July, 2022).
  13. NIER (National Institute of Environmental Research in Korea), 2021 : Designation notice of hazardous materials (listed on Dec. 28th 2021). URL : https://nier.go.kr/NIER/cop/bbs/selectNoLoginBoardList.do (Accessed July 10, 2022).
  14. Samjong KPMG Economic Research Institute Inc., Business Focus: Battery circular economy, EV battery market rising and its responding business strategy (translated from Korean), Research report in March 2022. URL : https://assets.kpmg/content/dam/kpmg/kr/pdf/2022/business-focus/kr-bf-recycling-battery-20220311_Final.pdf (Accessed 8 August 2022).
  15. DoE (Department of Environment in Korea), 2022 : URL : https://www.korea.kr/news/pressReleaseView.do?newsId=156511785 (Accessed 9 July 2022).
  16. Sung Eel HiTech Co. Ltd., 2022 : URL : https://www.sungeelht.com/html/12 (Accessed 8 August 2022).
  17. Song, H.H., 2019 : Life cycle assessment of greenhouse gas emissions for light-duty vehicles in South Korea, Auto Journal. URL : https://www.ksae.org/func/download_journal.php?path=L2hvbWUvdmlydHVhbC9rc2FlL2h0ZG9jcy91cGxvYWQvam91cm5hbC8yMDIxMDUwMzE0MTc0MS41ODM4LjEwLjkucGRm&filename=S1NBRUFKXzIwMjE0MzA1XzE3LTIyLnBkZg==&bsid=48270 (Accessed July 22, 2022).
  18. Meng, K., Xu, G., Peng, X., et al., 2022 : Intelligent disassembly of electric-vehicle batteries: a forward-looking overview, Resour. Conserv. Recycl., 182, 106207.
  19. Stringer, D., Jie, M., 2018 : Where 3 million electric vehicle batteries will go when they retire. URL: https://www.bloombergquint.com/technology/where-3-million-electric-vehicle-batteries-will-go-when-they-retire (Accessed 11 July 2022).
  20. Lovell, J., 2019 : Storage: retirement home for old EV batteries?, URL : https://www.energycouncil.com.au/analysis/storage-retirement-home-for-old-ev-batteries/ (Accessed 11 July 2022).
  21. Pagliaro, M., Meneguzzo, F., 2019 : Lithium battery reusing and recycling: a circular economy insight, Elsevier Ltd Heliyon, 5(6), e01866.
  22. Harper, G., Sommerville, R., Kendrick, E., et al., 2019 : Recycling lithium-ion batteries from electric vehicles, Nature, 575(7781), pp.75-86. https://doi.org/10.1038/s41586-019-1682-5
  23. Hunt, G., 1996 : USABC electric vehicle battery test procedures manual (U.S. Council for Automotive Research). http://www.uscar.org/guest/article_view.php?articles_id=74 (Accessed 11 July 2022).
  24. Saxena, S., Le Floch, C., MacDonald, J., et al., 2015 : Quantifying EV battery end of-life through analysis of travel needs with vehicle powertrain models, J. Power Sources, 282, pp.265-276. https://doi.org/10.1016/j.jpowsour.2015.01.072
  25. Xu, X., Mi, J., Fan, M., et al., (2019). Study on the performance evaluation and echelon utilization of retired LiFePO4 power battery for smart grid, J. Clean. Prod., 213, pp.1080-1086. https://doi.org/10.1016/j.jclepro.2018.12.262
  26. Ai, N., Zheng, J., Chen, W.Q., 2019 : U.S. end-of-life electric vehicle batteries: dynamic inventory modeling and spatial analysis for regional solutions, Resour. Conserv. Recycl., 145, pp.208-219. https://doi.org/10.1016/j.resconrec.2019.01.021
  27. Li, X., Zhang, L., Liu, Y., et al., 2020 : A fast classification method of retired electric vehicle battery modules and their energy storage application in photovoltaic generation, Int. J. Energy Res., 44, pp.2337-2344. https://doi.org/10.1002/er.5083
  28. Ng, K.S., Moo, C-S., Chen, Y-P., et al., 2009 : Enhanced coulomb counting method for estimating state-of charge and state-of-health of lithium-ion batteries, Appl. Energy, 86(9), pp.1506-1511. https://doi.org/10.1016/j.apenergy.2008.11.021
  29. Liao, Q., Mu, M., Zhao, S., et al., 2017 : Performance assessment and classification of retired lithium ion battery from electric vehicles for energy storage, Int. J. Hydrogen Energy, 42, pp.18817-18823. https://doi.org/10.1016/j.ijhydene.2017.06.043
  30. Lai, X., Qiao, D., Zheng, Y., et al., 2019 : A rapid screening and regrouping approach based on neural networks for large-scale retired lithium-ion cells in second-use applications, J. Clean. Prod., 213, pp.776-791. https://doi.org/10.1016/j.jclepro.2018.12.210
  31. Zhou, Z., Duan, B., Kang, Y., et al., 2020 : An efficient screening method for retired lithium-ion batteries based on support vector machine, J. Clean. Prod., 267, 121882.
  32. Youngiltech Co., 2021 : URL : http://youngiltech.com/?ckattempt=1&uid=154&mod=document&page_id=924 (assessed 9 July 2022).
  33. Liu, C., Lin, J., Cao, H., et al., 2019 : Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review, J. Clean Prod., 228, pp.801-813. https://doi.org/10.1016/j.jclepro.2019.04.304
  34. Exponent Failure Analysis Associates, 2011 : Lithium-ion batteries hazard and use assessment, The Fire Protection Research Foundation: Final Report.
  35. Tan, W.J., Chin, C.M.M., Garg, A., et al., 2021 : A hybrid disassembly framework for disassembly of electric vehicle batteries, Int J Energy Res., 45, pp.8073-8082. https://doi.org/10.1002/er.6364
  36. Apple, 2018 : Apple adds Earth Day donations to trade-in and recycling program. URL: https://www.apple.com/newsroom/2018/04/apple-adds-earth-day-donations-to-tradein-and-recycling-program/ (Accessed 11 July 2022).
  37. Choux, C., Bigorra, E.M., Tyapin, I., 2021 : Task Planner for Robotic Disassembly of Electric Vehicle Battery Pack, Metals, 11, 387.
  38. Sun, L., Qiu, K., 2011 : Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries, J. Hazard. Mater, 194, 378.
  39. Larsson, F., Andersson, P., Blomqvist, P., et al., 2017 : Toxic fluoride gas emissions from lithium-ion battery fires, Nature Sci. Rep., 7, 10018.
  40. Crafts, C., Borek, T., Mowry, C., 2000 : Safety Testing of 18650-Style Lithium-ion Cells, Sandia National Laboratories, SAND2000-1454C.
  41. Roth, E.P., Crafts, C.C., Doughty, D.H., et al., 2004 : Advanced Technology Development Program for Lithium-Ion Batteries: Thermal Abuse Performance of 18650 Li-Ion Cells, Sandia Report: SAND2004-0584.
  42. Georgi-Maschler, T., Friedrich, B., Weyhe, R., et al., 2012 : Development of a recycling process for Li-ion batteries, J. Power Sources, 207, 173.
  43. Campion, C.L., Li, W., Lucht, B.L. 2005 : Thermal decomposition of LiPF[sub 6]-based electrolytes for lithium-ion batteries. J Electrochem Soc., 152(12), A2327.
  44. PRTR (Pollutant Release and Transfer Register in Korea), 2020 : URL : https://icis.me.go.kr/prtr/prtrInfo/mttrSearch.do (Accessed 13 July 2022).