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1. Introduction

Lithium-ion batteries are the important power source
for Electric Vehicles (EVs), Portable Electronics and
Energy Storage Systems (ESSs). It has advantages
over the other batteries such as high voltage, high
specific energy, and high energy density. Therefore, a
longer drive range, a higher cycle life, a higher
columbic efficiency (up to 98%) and a lower

self-discharge rate can be achieved when it is used
for EV applications[8],[9]. For the safe and reliable
operation of Lithium-ion batteries in EVs or ESSs, it
is essential to have accurate information of the
battery such as the State of Charge (SOC).
The SOC estimation methods include Coulomb
Counting (CC), Extended Kalman Filter (EKF),
Particle Filter (PF) and State Observer (SO). One of
the most popular methods in estimating SOC is the
CC method which calculates SOC by accumulating the
currents over time. However, due to the errors in the
measurements, the accurate SOC estimation is difficult
as the error is also accumulating over time. Other
methods such as EKF, PF and SO can estimate the
SOC with good enough accuracy since it does not
fully rely on the current accumulation. However, these
methods need an accurate model of battery with
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parameters for the accurate estimation of SOC.
Machine learning has been used to provide solutions
to many kinds of different engineering problems over
a long period of time. It has an advantage that the
complex system can be modeled with raw data and
without the need for hand-engineered models. In ref
[3], an extreme learning machine is used at a
constant ambient temperature of 25°C. Though a SOC
estimation error under 1.5% is claimed, it can be
achieved only in conjunction with the Kalman Filter.
Since the extreme learning machine is trained with
the data obtained by the constant discharge pulses its
performance during the transient and/or in real world
scenarios is unknown. In Ref. [4], Support Vector
Machine (SVM) is used with a moving window to
improve the computational efficiency when modeling
the battery and an MAE of less than 2% is achieved.
However, as is the case for the above works, it can
be achieved in conjunction with an Extended Kalman
Filter (EKF). In Ref. [5], a load classifying neural
network is used to estimate the SOC of the battery
with data obtained from twelve US06 driving cycle
tests, however a different kinds of neural networks
should be used for idling, charging and discharging
operation, respectively. The method achieves an
average estimation error of 2.6% when the additional
filtering is applied. Furthermore, the validation is
performed only with a pulse discharge test hence the
performance of the method in the practical application
is unknown.
In this paper, a novel Deep Neural Network (DNN)
based SOC estimation method for the Lithium
batteries is proposed without the help of any
modeling method such as the Kalman Filter. The
voltage and current data obtained at different
temperatures are mapped to the SOC. The DNN is
first trained with a data set obtained with a cell and
then the resulting algorithm is applied to other cells
of the same kind. The proposed method has the
following advantages. (1) A single DNN maps the
input signals of the battery such as voltage, current
and temperature directly to the battery SOC and the
use of an additional filter or the other conventional
estimation algorithms are not required. (2) The DNN
can get its own weights by the self-learning
algorithm. This is different from other techniques
such as lumped parameter models, equivalent circuit
models or electrochemical models which require a
great amount of time for the pretests. (3) Only one

DNN is used to estimate SOC at different ambient
temperature conditions. It can be regarded as a
significant advantage since the traditional estimation
techniques use different models or different look-up
tables for the estimation at different ambient
temperatures.

2. Deep Neural Network for SOC Estimation

The feed-forward neural networks can model
complex non-linear systems by mapping the inputs to
the desired output. Once training is completed the
DNN can estimate the SOC of the battery in a quite
short period of time. The DNN is the collection of the
software neurons arranged in multiple layers. The
DNN used in this paper consists of three layers, an
input layer, a hidden layer, and an output layer as
shown in Fig. 1. The equation for the single neuron
can be represented by Eq. (1).

  ×  (1)

Where x is an input vector, W is weight and b is a
bias. Each layer consists multiple neurons that
interact with each other. The output of a single layer
can be represented by Eq. (2).

  


    (2)

Where f represents the activation function. There are
several kinds of different activation functions that can
be used for DNN. For the SOC estimation of the
battery ReLU (Rectified Linear Unit) is the best
selection because it rejects negative values and
converges fast. The DNN has more than one hidden
layer and Eq. (2) can be expanded for all layers by
Eq. (3).

   
   




  

  (3)

Where k represents the number of neurons, l
represents the number of layers and Y is the output
SOC value. The MAE calculated in the preceding
feedback process can be represented by Eq. (4).

  



  





  
(4)

Where i is an element in a data set, E represents the
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MAE,  represents the expected output and 

represent the actual output. During the process of
back propagation, the weight is adjusted by Eq. (5).

      


(5)

Where,   is the new corrected weight,  is

the current state weight and  is the learning rate.
Through continuous training and adjustment, the DNN
can obtain the best model by minimizing the MAE.
For this purpose, Root Mean Square Propagation
(RMSprop) Optimizer is used to minimize the MAE
by adjusting the weights as shown in Eq. (5). The
optimizer can effectively improve the convergence
speed of DNN and reduce the prediction error.
In order to find the best combination of layers and
neurons which gives the lowest MAE for the SOC
estimation of the battery, several different
combinations of layers and neurons are tested. Table

I shows the MAE results with different combinations
of layers and neurons. As shown in Table I the best
combination of DNN which gives the lowest MAE is
the DNN with 3 layers and 64 neurons of which
MAE is 1.2%.

3. Data Preparation, Learning and Validation

For DNN training a handsome amount of battery
data is needed. Three different Dynamometer Driving
Cycles (DDCs) such as Urban Dynamometer Driving
Schedule (UDDS), Highway Fuel Economy Test
(HWFET) and Japan 10-15 are selected.
After applying theses DDCs on a battery cell the
measured data, voltage and current of the battery are
collected and used to train the DNN. For the training
purpose, only UDDS profile data is used. The tests
are repeated at different ambient temperatures ranging
from 0°C to 60°C. For the testing, HWFET and Japan
10-15 are used at 0°C, 25°C and 60°C. The sampling
rate of the data acquired is 1Hz. All the information
about the DDCs can be found in Table II.
In order to obtain the current waveform of the
battery with UDDS, HWFET and Japan 10-15 the
following equations are used. At first, the electrical
power required to drive EV is calculated by using
Eq. (6).

  









  (6)

Where  is the mechanical power required to drive

EV with DDC as shown by Eq. (7).

        (7)

Where  is the rolling resistance force,  is the

aerodynamic drag force,  is the hill climbing force,

 is the acceleration force,  is the angular

acceleration force and fte is the tractive effort. Here,

TABLE I
MAE OF SOC ESTIMATION WITH DIFFERENT

COMBINATIONS OF LAYERS AND NEURONS FOR DNN

Number of Layers Number of Neurons MAE(%)

2 24 2.6

2 64 1.9

3 64 1.2

4 64 1.9

5 64 1.65

8 4 1.75

8 64 1.8

8 128 2.55

TABLE Ⅱ
USED DDCS AND THEIR CHARACTERISTICS

Test Use
Power (W)

Mean RMS Peak

UDDS Training 3.627 4.987 22.62

HWFET Validation 3.2 4.45 17.85

Japan 10-15 Validation 1.48 1.219 13.90
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Vavg(t)
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Temp

Input Layer Hidden Layer Output Layer
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Fig. 1. Structure of DNN.
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TABLE Ⅲ
PARAMETERS USED FOR DDCS

Variable Value Unit

Mass (m) 1580 Kg

Area (A) 2.6426 m2

Drag Coefficient (Cd) 0.19-0.29

Rolling Resistance Coefficient (µrr) 0.01-0.015

Air Density (p) 1.2-1.25 Kg/m3

Gravity (g) 9.81 m/s2

Battery to Wheel Efficiency (Nwheel) 0.7

Wheel to Battery Efficiency (Nreg) 0.5

 is 0 because there is no slope and  is less

than 1% of total power which can be neglected.
Hence, the mechanical power can be represented as
shown in Eq. (8).

   




  (8)

The acceleration can be calculated by using Eq. (9).

 

   
(9)

The velocity values for HWFET, UDDS and Japan
10-15 can be acquired from ref [6]. By using values
in Table. III Eq. (6) can be rewritten as Eq. (10).
After mixing some charge profiles with the DDCs the
measured data are used to train and to validate the
SOC estimation performance of DNN.

     (10)

Fig. 2 shows the current waveform of UDDS,
HWFET and Japan 10-15 profiles calculated by Eq.
(10). The current values are scaled down by a factor
of 20 to suit single-cell specification given in Table. IV.
The test procedure to acquire the data with DDC is
as follows: (1) Set thermal chamber temperature to a
certain value, (2) Charge the battery fully and (3)
Run the DDC profile while acquiring the data as
shown in Fig. 3. The DDC repeats until the battery
voltage reaches 2.5V. This process is repeated with
all the DDCs at each temperature. Fig. 3 and Fig. 4
shows the flowchart of the test procedure and
experimental setup for the data acquisition from the
battery. A commercially available data acquisition
board from National Instrument (cDAQ-9174) is used
to acquire the voltage and current waveforms of the
battery through the sensing circuit. The temperature

Set desired 
Temperature

Start

Charge Battery to 
100%

RUN DDC Profile

Battery Voltage
< 2.5V

Record Voltage & 
Current values

No

yes

Change 
Temperature

End

Yes

No

Fig. 3. Flowchart of test procedure for data acquisition.

(a)

(b)

(c)

Fig. 2. Battery current profiles obtained with DDCs. (a)
UDDS cycle profile, (b) HWFET cycle profile, (c) Japan
10-15 mode cycle.
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of the chamber is maintained constant during the
experiment.
The Lithium-ion cell used in the experiment is
Samsung INR18650-29E (Nickel Manganese Cobalt
Chemistry) whose nominal capacity is 2850mAh. Other
specifications can be found in Table IV. The Adaptive
Extended Kalman Filter (AEKF)[10] is used to estimate
the SOC while the DDCs are applied to the battery
and the data obtained during the test is used for
DNN training.
In this paper, TensorFlow, a machine learning
library in Python, is used for batch work. The
TensorFlow framework provides an ability to quickly
prototype and tests different network architectures
and it is able to automatically compute the
backpropagation. The training time of DNN is

proportional to the amount of input data and the
number of epochs.
The DNN is trained with the data obtained through
the pretests. The UDDS current profile is applied to a
battery cell and it is repeated around eight times as
shown in Fig. 5. The obtained current, voltage,
temperature and SOC calculated by AEKF are used to
train DNN.
The obtained data is divided into two parts. 80% of
the data is used for the training and 20% of the data
is used for the validation. Fig. 6. shows the SOC
estimation results during DNN training. Fig. 6 (a)
shows the SOC estimation results by both DNN and
AKEF and Fig. 6 (b) shows the MAE value at each
epoch over 1000 epochs for the training. As shown in
Fig. 6 the minimum training error is around 0.02%,
which proves that the training is successful.
After the successful training process, the DNN is
validated with the rest of 20% data of the same
profile to check the accuracy of the trained DNN.
During the validation SOC values estimated by the
trained DNN are compared with those estimated by
AEKF as shown in Fig. 7. The maximum MAE value
is 0.2% which proves that the training was
successful.

TABLE Ⅳ
SAMSUNG INR18650-29E

Nominal Voltage 3.65V

Nominal Capacity 2850mAh

Min/Max Voltage 2.5V/4.2V

Max. Charge Current 2750mA

Min. Charging temperature -10°C

Max. discharge current 8250mA(non-continuous)

Fig. 5. UDDS test profile cycles used for DNN training.

Power (+ve)

Power (-ve)

+ve Sense 
Wire bus

-ve Sense 
wire bus

NI-cDAQ-9174 Voltage and Current 
sensing circuit

Temperature 
Chamber

DC Power Supply (PWR1600L)
Electronic Load (PLZ1004W)

Control Computer
(Corei5, 4GB RAM, LABVIEW 2018)

Battery Cell

Fig. 4. Experimental setup for DNN training with a battery
cell.

(a)

(b)

Fig. 6. SOC estimation results during DNN training. (a)
Comparison between DNN and AKEF results, (b) MAEs
over 1000 epochs.
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In order to implement it in a microcontroller the
final equation of the trained DNN needs to be built.
The trained DNN equation used to predict SOC of the
battery with voltage, current and temperature can be
represented by Eq. (11).

  
×   (11)

Where Y is the output of hidden layer, f is the
activation function,  is the weight of the hidden

layer, X is the input array and bh is the bias of the
hidden layer. The output of the hidden layer will be
used as the input of DNN. The output layer can be
represented by Eq. (12).

  
×   (12)

Where  is the weight, Y is the input array to the

output layer,  is the bias of the output layer and f

is the activation function. The output layer gives SOC
as output. The input array X consists of voltage,
current and temperature of the battery. Here, ReLU is
used as an activation function as shown in Eq. (13).

  → for   
 for  ≥ 

(13)

Eq. (13) shows that ReLU is a function whose
output is zero for negative input value and returns
the same value for the positive input value.

4. Experimental Results

In order to further validate the performance of the
trained DNN two kinds of tests were performed.
Here, the trained DNN is applied to estimate the
SOCs of different Lithium battery cells which were
not used for the training. The trained DNN is

implemented in a DSP TMS320F28335 using Eqs.
(11)-(13). The weights and biases are extracted by
the Python model and saved in the memory of the
DSP. Fig. 8 shows the implementation of DNN in a
DSP for validation with six battery cells and the
laboratory experimental setup is shown in Fig. 9.
In the first test, a UDDS profile shown in Fig 2 is
applied to the six Lithium battery cells connected in
series at 25°C. The DNN is allowed to train with cell
1 data and then tested to estimate the SOCs of the
other cells. The results were compared with SOC
values obtained with the AEKF. Fig. 10 shows the
SOC estimation results of six cells by DNN at 25°C.
Here, the UDDS cycle shown in Fig. 2 (a) is repeated
until one of the battery voltage reaches the cut-off
voltage (2.5V).
The MAEs of the SOC estimation of all cells are
shown in Table V. It can be found from Table V
that the DNN can predict SOCs of different cells with
a max MAE less than 1.213%. Here, cell 2 shows the
largest MAE while the other cells show almost
similar MAEs.

Fig. 9. Laboratory experimental setup for the validation.

V1 V2 V3 V4 V5 V6

Power (+ve)

Power (-ve)

+ve Sense 
Wire bus

-ve Sense 
wire bus

DSP TMS320F28335 DC Power Supply (PWR1600L)
Electronics Load (PLZ1004W)

Voltage & Current 
Sensing Circuit Temperature 

Chamber

Fig. 8. Implementation of DNN in a DSP for validation with
six battery cells.

Fig. 7. Validation of trained DNN for SOC estimation.
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In the second test, three different DDCs such as
UDDS, HWFET and Japan 10-15 at different
temperatures are applied to Lithium battery cells and
the data is acquired and stored in a PC. In this test
UDDS profile is used for learning and HWFET and
Japan 10-15 are used to evaluate the performance of
the DNN to estimate the SOC of the battery at
different temperatures. The DDC profiles are repeated
until one of the battery cells reaches cut-off voltage
(2.5V). The UDDS profile shown in Fig. 2(a) is
repeated eight times, HWFET profile shown in Fig.
2(b) is repeated nine times and Japan 10-15 profile
shown in Fig. 2(c) is repeated eleven times. The SOC
estimation results by DNN with HWFET and Japan

10-15 at 0°C, 25°C and 60°C are shown in Fig. 11.
The MAEs of SOC estimation of HWFET and
Japan 10-15 are shown in Fig. 12. In the case of
HWFET, the MAE is 2.87% at 0°C, 2.832% at 25°C,
1.017% at 60°C, respectively. In the case of Japan
10-15 the MAE is 1.955% at 0°C, 2.151% at 25°C and
4.096% at 60°C, respectively.
In order to measure the execution time of the
proposed algorithm, the time is measured by the
oscilloscope. One of the digital output of the DSP is
set to toggle at the beginning and end of the
algorithm. As shown in Fig. 13 the total time taken
by DNN to estimate SOC of a cell is 453µs.
Typically, the SOC of a battery cell needs to be
estimated every 1 second. Therefore, it is possible to
estimate the SOCs of more than 2000 battery cells in
a second if the proposed algorithm is employed.

5. Conclusion

In this paper, a novel DNN based the SOC
estimation algorithm for the Lithium-ion battery has
been proposed and its validity has been proved by the
experiments. The SOC estimation of six battery cells
has been successfully achieved with less than 1.213%
error. The experimental results show that the trained

TABLE V
MAE OF SOC ESTIMATION

Cell# % Error (MAE)

Cell 2 1.213

Cell 3 0.564

Cell 4 0.591

Cell 5 0.588

Cell 6 0.580

Fig. 10. SOC estimation results with six battery cells using
UDDS DDC at 25°C.

Fig. 11. SOC estimation results with HWFET and Japan
10-15 at 0°C, 25°C and 60°C.

Fig. 12. SOC Estimation errors with HWFET and Japan
10-15 DDC at 0°C, 25°C and 60°C.

Fig. 13. The execution time of DNN in a DSP.
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DNN with only one cell can be used to estimate the
SOC of the same kind of battery cells with high
accuracy. It can be found from many papers that, the
typical value of error in SOC estimation by AEKF is
around 3%. Therefore, the SOC estimation accuracy of
the DNN would be better under the assumption that
the provided data for training is almost close to the
true value. As of now, the parameter deviations
between batteries are assumed very small. However,
parameter deviations between batteries may grow
larger as the time goes by. In that case it is expected
that the error in SOC estimation would become large.
The trained DNN with the weights and biases
extracted by the Python model has been successfully
implemented in a DSP and the performance of it has
also been verified. The proposed algorithm can be
used for battery applications using many battery cells
such as EVs and ESSs.

This research was supported by the R&D program
for new energy industry through Chungnam Center
for Creative Economy and Innovation (CCCEI)
funded by Local Government of Chungchengnamdo.
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