• 제목/요약/키워드: Batch system

검색결과 1,091건 처리시간 0.023초

Long-term Repeated-Batch Operation of Immobilized Escherichia coli Cells to Synthesize Galactooligosaccharide

  • Lee, Sang-Eun;Yeon, Ji-Hyeon;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1486-1493
    • /
    • 2012
  • In this study, we investigated whether galactooligosaccharide (GOS) can be stably and steadily synthesized using immobilized ${\beta}$-galactosidase (${\beta}$-gal) inclusion body (IB)-containing E. coli cells during long-term repeated-batch operation. To improve the operational stability of this enzyme reactor system, immobilized E. coli cells were crosslinked with glutaraldehyde (GA) after immobilization of the E. coli. When we treated with 2% GA for E. coli crosslinking, GOS production continued to an elapsed time of 576 h, in which seven batch runs were operated consecutively. GOS production ranged from 51.6 to 78.5 g/l ($71.2{\pm}10.5$ g/l, n = 7) during those batch operations. In contrast, when we crosslinked E. coli with 4% GA, GOS production ranged from 31.5 to 64.0 g/l ($52.3{\pm}10.8$, n = 4), and only four consecutive batch runs were operated. Although we did not use an industrial ${\beta}$-gal for GOS production, in which a thermophile is used routinely, this represents the longest operation time for GOS production using E. coli ${\beta}$-gal. Improved stability and durability of the cell immobilization system were achieved using the crosslinking protocol. This strategy could be directly applied to other microbial enzyme reactor systems using cell immobilization to extend the operation time and/or improve the reactor system stability.

Application of a Fed-Batch Bioprocess for the Heterologous Production of hSCOMT in Escherichia coli

  • Passarinha, L.A.;Bonifacio, M.J.;Queiroz, J.A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.972-981
    • /
    • 2009
  • In this paper, a fed-batch cultivation process in recombinant Escherichia coli BL21(DE3) bacteria, for the production of human soluble catechol-O-methyltransferase (hSCOMT), is presented. For the first time, a straightforward model is applied in a recombinant hSCOMT expression system and distinguishes an initial cell growth phase from a protein production phase upon induction. Specifically, the kinetic model predicts biomass, substrate, and product concentrations in the culture over time and was identified from a series of fed-batch experiments designed by testing several feed profiles. The main advantage of this model is that its parameters can be identified more reliably from distinct fed-batch strategies, such as glycerol pulses and exponential followed by constant substrate additions. Interestingly, with the limited amount of data available, the proposed model accomplishes satisfactorily the experimental results obtained for the three state variables, and no exhaustive process knowledge is required. The comparison of the measurement data obtained in a validation experiment with the model predictions showed the great extrapolation capability of the model presented, which could provide new complementary information for the COMT production system.

Repeated-Batch Operation of Immobilized ${\beta}$-Galactosidase Inclusion Bodies-Containing Escherichia coli Cell Reactor for Lactose Hydrolysis

  • Yeon, Ji-Hyeon;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권9호
    • /
    • pp.972-978
    • /
    • 2011
  • In this study, we investigated the performance of an immobilized ${\beta}$-galactosidase inclusion bodies-containing Escherichia coli cell reactor, where the cells were immobilized in alginate beads, which were then used in repeated-batch operations for the hydrolysis of o-nitrophenyl-${\beta}$-D-galactoside or lactose over the long-term. In particular, in the Tris buffer system, disintegration of the alginate beads was not observed during the operation, which was observed for the phosphate buffer system. The o-nitrophenyl-${\beta}$-D-galactoside hydrolysis was operated successfully up to about 80 h, and the runs were successfully repeated at least eight times. In addition, hydrolysis of lactose was successfully carried out up to 240 h. Using Western blotting analyses, it was verified that the ${\beta}$-galactosidase inclusion bodies were sustained in the alginate beads during the repeated-batch operations. Consequently, we experimentally verified that ${\beta}$-galactosidase inclusion bodies-containing Escherichia coli cells could be used in a repeated-batch reactor as a biocatalyst for the hydrolysis of o-nitrophenyl-${\beta}$-D-galactoside or lactose. It is probable that this approach can be applied to enzymatic synthesis reactions for other biotechnology applications, particularly reactions that require long-term and stable operation.

Order Batch Formations for Less Picker Blocking in a Narrow-Aisle Picking System

  • Hong, Soondo
    • Industrial Engineering and Management Systems
    • /
    • 제14권3호
    • /
    • pp.289-298
    • /
    • 2015
  • This paper analyses the best batch formations for order picking throughput in narrow-aisle order picking systems. Our analytical comparison finds that a high pick density variation leads to a heavy picker blocking. Simulation experiments show that a distance-based batching algorithm reduces picker blocking by decreasing the number of aisles visited and stabilizing the variation in number of picks per aisle by packing orders tightly, and that the solution quality and mechanism for determining the batch size dictated by the sorting strategy causes varying amounts of blocking. We conclude that combining a distance-based batching method with an appropriate batch sizing strategy will reduce picker blocking and shorten travel in narrow-aisle picking systems.

다제품 회분식 공정 생산계획 자동화 및 최적화 (Automatic Optimal Scheduler for Multiproduct Batch Processes)

  • 이경범
    • 제어로봇시스템학회논문지
    • /
    • 제22권12호
    • /
    • pp.1040-1045
    • /
    • 2016
  • An inventory control system was developed for multiproduct batch plants with an arbitrary number of batch processes and storage units. Customer orders are received by the plant at intervals and in quantities that are subject to random fluctuations. The objective of the plant operation is to minimize the total cost while maintaining inventory levels within the storage or warehouse capacity by adjusting the startup times, the quantities of raw material orders, and production batch sizes. An adaptive model-based control algorithm was developed that uses a periodic square wave model to represent the flows of material between the processes and the storage units. The effectiveness of this approach was demonstrated by performing simulations.

단일 Burn-In Oven에서 Total Weighted Earliness와 Tardiness를 최소화하기 위한 유전자 알고리즘의 활용 (Minimization of Total Weighted Earliness and Tardiness on a Single Burn-In Oven U sing a Genetic Algorithm)

  • 박유진
    • 산업경영시스템학회지
    • /
    • 제31권4호
    • /
    • pp.21-28
    • /
    • 2008
  • 본 연구는 반도체 제조공정에서 사용되는 단일 Burn-In oven에서의 Total weighted earliness와 Tardiness를 최소화하기 위한 생산 스케줄링을 결정하는 문제를 다룬다. 본 연구에서는 모든 작업은 상시에 시작가능하고 각각은 서로 다른 가중치를 가지고 있다고 가정하였다. 일반적으로 단일 Burn-In oven은 다양한 작업들이 동시에 가능한 Batch processing 기계이다. 따라서 다양한 작업들로 구성된 하나의 Batch의 Processing time은 그 Batch 내에 있는 가장 긴 Processing time을 가지는 작업에 의해 결정된다. 본 연구에서 Batch size는 미리 결정되지 않은 상황이라고 가정한 후, 최적의 Batch 개수와 작업의 순서를 결정하기 위해 유전자 알고리즘을 적용하였다. 수리적 예제를 통해서 다양한 접근방법의 성능들을 비교한 결과, 유전자 알고리즘이 Total weighted earliness와 Tardiness를 최소화하는데 가장 뛰어난 성능을 가지고 있음을 알 수 있다.

이단계 그룹검사를 갖는 대기행렬모형의 분석 (Analysis of a Queueing Model with a Two-stage Group-testing Policy)

  • 양원석
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.53-60
    • /
    • 2022
  • In a group-testing method, instead of testing a sample, for example, blood individually, a batch of samples are pooled and tested simultaneously. If the pooled test is positive (or defective), each sample is tested individually. However, if negative (or good), the test is terminated at one pooled test because all samples in the batch are negative. This paper considers a queueing system with a two-stage group-testing policy. Samples arrive at the system according to a Poisson process. The system has a single server which starts a two-stage group test in a batch whenever the number of samples in the system reaches exactly a predetermined size. In the first stage, samples are pooled and tested simultaneously. If the pooled test is negative, the test is terminated. However, if positive, the samples are divided into two equally sized subgroups and each subgroup is applied to a group test in the second stage, respectively. The server performs pooled tests and individual tests sequentially. The testing time of a sample and a batch follow general distributions, respectively. In this paper, we derive the steady-state probability generating function of the system size at an arbitrary time, applying a bulk queuing model. In addition, we present queuing performance metrics such as the offered load, output rate, allowable input rate, and mean waiting time. In numerical examples with various prevalence rates, we show that the second-stage group-testing system can be more efficient than a one-stage group-testing system or an individual-testing system in terms of the allowable input rates and the waiting time. The two-stage group-testing system considered in this paper is very simple, so it is expected to be applicable in the field of COVID-19.

Near optimal production scheduling for multi-unit batch process

  • Kim, Kyeong-Sook;Cho, Young-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1718-1723
    • /
    • 1991
  • The determination of a production sequence is an important problem in a batch process operation. In this paper a new algorithm for a near optimal production sequence of N product in an M unit serial multiproduct batch process is proposed. The basic principle is the same as that of Johnson's algorithm for two-unit UIS system. Test results on a number of selected examples exhibit the superiority over previously reported results. In addition, a tabulation technique is presented to calculate the makespan of a given sequence of production for all processing units under UIS mode.

  • PDF

Relay Feedback을 이용한 회분식 반응기제어 (Control of a batch reactor using relay feedback)

  • 이용수;이대욱;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.749-753
    • /
    • 1993
  • It is very difficult to control batch reactor with conventional linear controller due to its severe nonlinearity. To control the nonlinearity of batch reactor, we applied with relay feedback method and SOAS. The SOAS can be designed to work quite well, but it requires engineering effect and some knowledge about the process in order to get a satisfactory performance of the closed loop system For the applications to more reliable, further studies on robustness in various situations and process noises and would be required.

  • PDF

다품종용 회분식 공정에서의 중간 저장 탱크 공유를 위한 최적 생산계획 ; 회분식 조업의 자동화 모델 (Optimal Scheduling of Multi-product Batch Process for Common Intermediate Storage Policy; A Model for Batch Process Automation)

  • 정재학;이인범;양대륙;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.303-308
    • /
    • 1992
  • In this study, we propose a shared storage system which is more efficient policy than MIS(Mixed Intermediate Storage) policy for relatively rare storage system and can be called CIS(Common Intermediate Storage) policy. Using this strategy, we develop a new completion time algorithm and apply it to two kinds of optimal or near optimal scheduling method; combinatorial search and simulated annealing method. We also extend this strategy to other storage policy, for example MIS policy, with PLC(Programmable Logic Controller) logic and on/off action of electronic valves. It thus can be accepted as a basic form of FMS(Flexible Manufacturing System) for operating various storage policies. Finally we suggest the interlocking block to compansate for the shortcoming of CIS policy, i.e, complication of operation and safety, resulting in a basic batch process automation mode.

  • PDF