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1. Introduction

This research is motivated by the problem of scheduling
compatible jobs proceeded in burn-in ovens in semiconductor
manufacturing. In burn-in operation, semiconductor chips are
exposed to high temperatures in a fixed capacity oven in
order to weed out chips susceptible to premature failure.
Generally, different types of chips have different processing
times and require different level of temperature in the oven.
The operation of burn-in oven, as the final stage of the semi-
conductor manufacturing processes, is to test whether all in-
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tegrated circuits are defective products or not before passing
on to the customers (Mehta and Uzsoy, 1998; Azizoglu and
Webster, 2001).

In this paper we consider the problem of scheduling a
given set of jobs and determining the batch sizes on a single
burn-in processing machine in order to minimize the total
weighted earliness and tardiness. It is assumed that there is
a set of jobs denoted by j = 1, ---, n, which can be grouped
into size of B at maximum without any restriction to
grouping. Also, it is assumed that a certain job j is available
at time zero, and its processing time, due date, and weight
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are represented by p;, d;, and w;, respectively. Since the
burn-in oven is a batch processing machine which can proc-
ess up to B number of jobs simultaneously, the processing
time of the batch is equal to the longest processing time
of a job in that batch (Chandru et al., 1993). Since the
throughput of the burn-in operations is very critical for both
satisfying customer and reducing the inventory cost, the ef-
fective scheduling and batching of jobs are needed. However,
it is known that this scheduling problem is a very complicate
problem (NP-hard problem) by the fact that there is a tremen-
dous number of the possible combination of the batches and
job sequences. Thus, we aim to find an optimal job schedule
and batches that minimize the total weighted earliness and
tardiness simultaneously on a single burn-in oven environ-
ment. In next sections, we review previous studies concern-
ing the scheduling problems with earliness and tardiness and
then apply a genetic algorithm and a dynamic programming
approach to obtain the optimal number of batches as well
as the optimal job schedule simultaneously under the assum-
ption that the number of batches has not been determined.

2. Previous studies

Many production scheduling problems with varying cri-
teria and assumptions relating to due dates and weights have
been recognized for their complexity and treated in many
literatures. Among these, the single machine scheduling pro-
blems have been extensively studied, and the performance
measure of most of the previous work in single-machine
scheduling problems was especially tardiness (Baker, 1974).
However, in many manufacturing industries, with the advent
of the Just-In-Time (JIT) concept, attention has been drawn
towards minimization of earliness as well as tardiness be-
cause these two measures are important in reducing inventory
cost and keeping the due dates to satisfy customers,

Gupta and Kyparisis (1987), and Sen and Gupta (1984)
reviewed literatures related to variations of this problem [5,
6]. Sidney (1977), and Lakshminarayan et al. (1978) pre-
sented algorithms for minimizing the maximum penalty of
early or late jobs. Baker and Scudder (1990) provided a com-
prehensive survey relating to earliness and tardiness models.
Ferris and Vlach (1992) considered the general earliness and
tardiness problem.

However, scheduling problems related to batch processing
have not been extensively studied. Chandru, Lee, and Uzsoy
(1993) have considered a problem of minimizing the total

rA

completion time on a batch processing machine with in-
compatible job families where the machine can process at
most B jobs simultaneously as a batch and the processing
time of a batch is dependent on the processing times of jobs
in the batch. In Chandru et al. (1993), the set of jobs to
be scheduled can be partitioned into a number of families,
where all jobs in the same family have the same processing
time. They analyzed the properties of an optimal schedule
and developed a dynamic programming algorithm of poly-
nomial time complexity when the number of job families
is fixed.

Mehta and Uzsoy (1998) have considered a problem of
minimizing the total tardiness on a batch processing machine
with incompatible job families, where all jobs of the same
family have identical processing times and jobs of different
families cannot be processed together. They showed that a
greedy Earliest Due Date (EDD) rule can be used to form
batches for each family and then developed a dominance rule
which reduces the time for sequencing batches. Based on
these results, they developed a dynamic programming algo-
rithm which has polynomial time complexity when the num-
ber of job families and the batch machine capacity are fixed,
and then examined various heuristic methods which can pro-
vide near optimal solution in a reasonable amount of compu-
tation time. In order to evaluate the performance of the heu-
ristic methods they developed, they carried out a series of
computational experiments using randomly generated test
problems (Mehta and Uzsoy, 1998).

Azizoglu and Webster (2001) have considered a problem
of scheduling the burn-in operation in the fabrication of in-
tegrated circuits, and attempted to minimize total weighted
completion time. In this research, they proposed a branch
and bound procedure applicable to a batch processor model
with incompatible job families, that is, jobs in a given family
have identical job processing time, arbitrary job weights, and
arbitrary job sized. As a result, they found that the branch
and bound algorithm returns optimal solutions for problem
instances with up to about 25 jobs within 30 minutes of CPU
time, and that it can be adapted for use as a heuristic to
save CPU time and to use as a tool for larger problem in-
stances (Azizoglu and Webster, 2001).

Wang and Uzsoy (2002) have considered a problem of
minimizing maximum lateness on a batch processing ma-
chine in the presence of dynamic job arrivals, that is, jobs
is arriving at the machine dynamically over time. They adapt-
ed a dynamic programming algorithm to determine whether
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a due-date feasible batching exists for a given job sequence,
and then combined this algorithm with a random keys encod-
ing scheme to develop a genetic algorithm for solving this
problem. As a consequence, they showed that computational
experiments indicate this algorithm has excellent average
performance with reasonable computational burden.

Ménch, Unbehaun, and Choung (2006) have considered
a scheduling problem on a burn-in oven to reduce ear-
liness-tardiness under the constraint that the maximum tardi-
ness should be less than or equal to the maximum allowable
time. They applied several heuristic algorithms including a
genetic algorithm. More detailed discussions on the schedul-
ing problem of minimizing the earliness and tardiness can
be found in Garey (1988), Ow and Morton (1989), and Pinedo
(1995).

3. Problem modeling and solution
approaches

In this section, we describe the details and notations of
the problem, and solution approaches. As mentioned above,
the effectiveness and throughput of this operation in semi-
conductor manufacturing is very critical in both customer
satisfaction and inventory cost point of view. We now con-
sider a single batch processing machine and assume that there
is a set of jobs m =1, =+, n. A job j is assumed to be
available at time zero, and it has a processing time p;, a
due date dj, and weights w;, respectively. Since the burn-in
oven is a batch processing machine which can process up
to B jobs simultaneously as a batch, the processing time of
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Processing time of a batch = max(p;, p;, pi)

<Figure 1> Determination of processing time of a batch
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the batch is equal to the longest processing time of the jobs
in the batch as shown below:

Our objective is to find an appropriate job sequence and
determine the size of batches that minimize the total weighted
earliness and tardiness simultaneously. In a mathematical form,
the objective function of this problem can represented as:

Min 2 (wEj + wiT)),

where Ej, T;, and w; represent earliness, tardiness of job j,
and assigned weight to job j, respectively. In order to obtain
an optimal job sequence and batch form, we consider 5 dif-
ferent job sequencing rules and 2 different job batching rules
as listed below:

¢ Job Sequencing Rules : SPT, LPT, EDD, Smallest PDW,
and MST
¢ Batching Rules : LOE (Last Only Empty) and Random

For example, there are supposed to be 5 jobs with different
processing times, due dates, and weights which are denoted
by PT, DD, and W, respectively. If we rearrange the job
sequence by Shorted Processing Time (SPT) first rule, Lon-
gest Processing Time (LPT) first rule, Earliest Due Date
(EDD) first rule, Smallest ( p; x d; )Y'w; (PDW) first rule, and
Minimum Slack Time (MST) first rule, we can have 5 differ-
ent job sequences as following table [15].

Now, in order to seeking for the optimal solution (as men-
tioned above, determining both optimal batch sizes and opti-
mal job sequences simultaneously) of this scheduling, we
can use a backward dynamic programming (DP), and the
mathematical form of this scheduling problem as follows:

max p,, +C(i—j)) ‘ :

O<ksj-t

di-k_(

(wie )+ £ N}

j-1
i)= min
f( ) i<y imin(i,B){Z

k=0

<Table 1> A job sequence and 5 new job sequences by SPT first, LPT first, EDD first, Smallest PDW first, and

MST first rules

Job PT DD w Job_SPT | PT Job_LPT | PT Job_ EDD| DD Job_SPT | PDW {]Job_MST| MST
1 8 14 4 2 1 4 12 2 4 2 2 4 -7
2 1 4 2 3 3 1 8 4 5 3 13.5 2 3
3 3 9 2 5 5 5 5 5 8 4 20 5 3
4 12 5 3 1 8 3 3 3 9 1 28 13 6
5 5 8 1 4 12 2 1 1 14 5 40 4 6
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for 1 <i < n, where i represents the number of jobs com-
pleted, j represents the number of jobs in the last batch, f{i)
is the minimum earliness and tardiness from first job to job
i, B is the maximum batch size, and C(i) is the minimum
completion time of job i. We assume that C(0) = f0) = 0.
For example, when i =4 and B=3, since 1 < j < min(s, B),
then :

for j=1:
0

=3 dui~(maxpe )+ @) | (m)+ r@-D
k=0 -

:|d4"p4_c(3)i'(w4)+f(3)

for 7=2:
1

f®H=3 d4k—(roniix(1’4_k)+c(4—2))‘ (W )+ f(4-2)
k=0 <k<l

=|d, - max(p;, p,)-C(2)| - (w,)
+|dy -max(p,, p,)-C(2)| - (w,)+ f(2)

for 7=3:
f(4):Z dy, _(maxz(Pa-k)“‘C(“_:;))i : (W4~k)+f(4_3)
o 0sks

:|d4 —max(p,, p;, P4)_C(1)I : (WA)
+|d3 —max(p,, ps, p4)—C(1)| : (Ws)
+|d, ~max(p,, p,, p)=CM)| - (w, )+ f(1)

After calculating all f4) for j = 1, 2, and 3, we then choose
the minimum f{4) out of three solutions, and can illustrate
this example as <Figure 2>. The values (a, b) in each box
in <Figure 2> below represents the number of batches and
the number of jobs, respectively. The notation * means that
we do not know the specific number of batches, but we use
the minimum value of fih) for | < h < i-1.

ceylen] [en]en] [an]es

L 4 v
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<Figure 2> All possible batch forms for i = 4, and j =
1, 2, and 3

In this research, a genetic algorithm (GA) as well as a
backward dynamic programming approach is used for han-
dling this problem. There are many applications of genetic
algorithms to various scheduling problems. Since this prob-
lem is known as very difficult to solve due to the combinato-
rial aspects and the possibility of having numerous locally

optimal solutions, we employ a genetic algorithm which is
known to provide an optimal (or near optimal) solution with-
in a reasonable computation time [17]. The general procedure
for applying a genetic algorithm is shown in <Figure 3>.

Develop mapping scheme
Determine the genetic operations & genetic parameters

}

Generate the initial population and define the weighted
earliness and tardiness for each job

I

[ Calculate and find current best fitness measure f, |

}

[ Set i=1 (Start iteration) ]

I

! Generate new offspring using the genetic operations I‘-‘

Calculate the fitness of each offspring
and find best fitness £,

Update current optimal solution f, with f,.., ,
andi=i+1

<Figure 3> Genetic algorithm (GA) procedure

After generating the given number of initial population,
then, in order to explore the optimal solution more effi-
ciently, we generate new offspring for next generation by
providing diversity through three different types of genetic
operations to the problem; that is, cloning, mutation (swap-
ping) for changing the job sequence, and crossover for con-
structing a new batch form. Each individual solution includes
own batch form and job sequence. For example, consider
a job sequence i in <Figure 4>. The job sequence i has ini-
tially 5 batches ([4, 3, 1, 4, 3]} denoted by j, and the sequence
of jobs by [9, 1, 4, 11, 12, 5, 15, 8, 3, 7, 2, 14, 13, 6,
10]. Each value (defined as a chromosome in genetic algo-
rithms) in the job sequence i represents the job number to
be processed in machine (The index i in <Figure 3> repre-
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<Figure 4> Mutation (Swapping) operation on a job
sequence and crossover operation on
batches

sents a job sequence, and the index j in ‘Batch’ represents
a certain batch form). The mutation (swapping) operation
is set to swap the job sequences which are randomly chosen
where the number in a cell represents the job number, and
the single-point crossover is conducted on only two batches
where the number in one cell represents the number of jobs
in one batch. The values in ‘Batch’ j and ‘Batch’ k represent
the number of jobs assigned to each batch, for example, 4
in the Batch j means that the first 4 jobs are assigned to
the first batch. For instance, if the job sequence i is set to
be processed in Batch j, the first 4 jobs in job sequence
i, that is, [9, 1, 4, 11], are assigned to the first batch in
Batch j. The crossover operation is executed only when the
number of jobs in the part exchanged in a batch is exactly
same as that of the other batch. For example, since the total
number of jobs in the gray part in Batch j, § (= 4+3+
1), is same as that in the non-gray part in Batch &, 8 (=
3+1+2+2), the crossover operation can be executed.

Through the mutation and crossover operations, the new job
sequence i* obtained becomes [9, 7, 4, 11, 12, 5, 15, 8, 3,
1, 2, 14, 13, 6, 10], and the batch size of job sequence i
is changed into 6 (Batch j of the job sequence i changes
into Batch j', that is, [4, 3, 1, 4, 3] — [3, 1, 2, 2, 4, 3]).

The cloning operation is to keep the given number of
batches and sequences with outstanding performance. Thro-
ugh these operations, newly generated job sequences and
batch forms are included in the new offspring. Note that if
the number of jobs is », the maximum number of batches
is n because only one job can be assigned to one batch.

4. Computational results and analysis

In order to evaluate the performances of 10 different com-
bined algorithms, dynamic programming approach, and a ge-
netic algorithm, we generated 6 problem instances. We choose
the number of iterations as 100 and initial population size
as 100 and 200, and then we performed 10 times for each
problem instance. We assume there are 100, 500, and 1000
jobs to be processed, and the maximum batch size (B) is
assumed to be 3. The processing times of jobs for each prob-
lem instance are generated by a random number generator
with N(10, 2%, and the due dates of jobs are generated by
a random number generator with N(45, 5, respectively. We
also assume that there are 4 different weights (penalties) of
jobs and assign the weights to jobs randomly. The summar-
ized computational results of total weighted earliness and
tardiness from 10 different algorithms for 6 different cases
are shown as below. <Table 2> and <Table 3> contain values
of total weighted earliness and tardiness when 10 different

<Table 2> Total weighted earliness and tardiness from simulation (Initial population size = 100) (B = Batch size,
NJ = Number of Jobs, SPT = Shortest Processing Time First Rule, LPT = Longest Processing Time First
Rule, EDD = Earliest Due Date First Rule, MST = Minimum Slack Time First Rule, LOE = Last Only

Empty Rule)

Sequencing Rule Batch Rule B =3, NJ =100 B =3, NJ = 500 B = 3, NJ = 1000
SPT LOE 9123.7 46738 91057
SPT Random 91257 46740 91059
LPT LOE 91243 46738 91057
LPT Random 9125.9 46740 91059
EDD LOE 9005.7 46096 89867
EDD Random 9061.2 46263 90209

(Pj x Dj)wj LOE 9069.8 46422 90496
(Pj x Dj)ywj Random 9089.6 46508 90634
MST LOE 9039.3 44885 91313
MST Random 9010.8 44746 91205
Dynamic Programming 1.27E+0.5 3.42E+06 1.36E+07

Genetic Algorithm 8960.2 44042 89855
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<Figure 5> Comparison of total weighted earliness and tardiness for 3 different cases with initial population size of
100 (The numbers in row axis for each figure represent the combined scheduling-batch rules in order
shown in <Table 2>)

{Table 3> Total weighted earliness and tardiness from simulation (Initial population size = 200) (B = Batch size, NJ
= Number of Jobs, SPT = Shortest Processing Time First Rule, LPT = Longest Processing Time First
Rule, EDD = Earliest Due Date First Rule, MST = Minimum Slack Time First Rule, LOE = Last Only

Empty Rule)

Sequencing Rule Batch Rule B =3, NJ =100 B =3, NJ = 500 B =3, NJ = 1000
SPT LOE 8445.9 47381 90358
SPT Random 8447.4 47383 90360
LPT LOE 8446.3 47381 90358
LPT Random 8447.4 47383 90360
EDD LOE 8337.8 46771 89142
EDD Random 8366.2 46956 89506

(Pj x Dj)Iwj LOE 8402.8 47087 89748
(Pj x Dj)iwj Random 8407.2 47177 89938
MST LOE 8585.7 45321 91245
MST Random 85734 45245 91020
Dynamic Programming 1.17E+0.5 3.49E+06 1.37E+07

Genetic Algorithm 8290.1 44657 89125
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<Figure 6> Comparison of total weighted earliness and tardiness for 3 different cases with initial population size of
200 (The numbers in row axis for each figure represent the combined scheduling-batch rules in order
shown in <Table 3>)

combined algorithms, dynamic programming approach, and  ed earliness and tardiness of 1.27x10° for B = 3 and NJ
a genetic algorithm applied. For example, the genetic algo- = 100 case. Although the computation time of GA shows
rithm produces total weighted earliness and tardiness of 8960.2  slightly longer than those of the other combined rules and
while dynamic programming approach produces total weight-  backward dynamic programming approach, this seems to be
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negligible.

As results, it is shown that total weighted earliness and
tardiness of job schedules and batch forms obtained from
10 different combined algorithms and a dynamic program-
ming are all greater than that obtained from GA for all in-
stances considered. The backward dynamic programming ap-
proach provides the worst solution for all cases since the
jobs are bound as a batch of the fixed size in EDD order
without considering priorities of processing times and wei-
ghts. We also see that the number of initial populations as
well as a certain property of initial population affects the
computational results, and, as the number of jobs increase,
minimal difference exists between EDD-LOE rule or MST-
Random rule and the genetic algorithm approach, which
means that the EDD-LOE or MST-Random combined rules
could be an attractive alternative to the other combined rules
or a GA since the EDD-LOE or MST-Random combined
rules could provide a better solution than the other combined
rules including the backward dynamic programming approach
do. However, further investigation will be needed in order
to identify which algorithm provides better performance for
the cases of the large number of jobs and large batch size.
In conclusion, compared to the SPT, LPT, EDD, PDW, and
MST rules combined with LOE and Random batching rules
as well as a backward dynamic programming approach, the
genetic algorithm performs very well and it gives better sol-
ution in total weighted earliness and tardiness point of view.

5. Conclusion and further study

These types of scheduling optimization problems fre-
quently rise in many complicated manufacturing and service
industries, and it is known that it is very difficult to obtain

an optimal job sequence and batch size for the problem with- -

in reasonable computation time. Efficient algorithmic techni-
ques have been developed and used to deal with these kinds
of scheduling problems. In this research, we employ a genet-
ic algorithm and provide near-optimal job sequence and
batch size simultaneously to minimize total weighted earli-
ness and tardiness on a single batch processing machine. We
may improve the computational efficiency by modification
or extensions to genetic algorithms GA-SA (Genetic Algori-
thm and Simulated Annealing) approach, or by using differ-
ent types of genetic operations such as applying multi-point
mutation (swapping) rule, or reverse order of the batches

or two-point crossover on batches. As the task of next re-
search, we can consider more realistic scheduling problems
currently happening in the complex manufacturing processes,
for example, a scheduling problem on mirnimization of com-
pletion time in multiple batch-parallel processing machines
with different idle/release times and batch setup times.
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