Browse > Article

Application of a Fed-Batch Bioprocess for the Heterologous Production of hSCOMT in Escherichia coli  

Passarinha, L.A. (CICS-Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior)
Bonifacio, M.J. (Departamento de Investigacao e Desenvolvimento)
Queiroz, J.A. (CICS-Centro de Investigacao em Ciencias da Saude, Universidade da Beira Interior)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.9, 2009 , pp. 972-981 More about this Journal
Abstract
In this paper, a fed-batch cultivation process in recombinant Escherichia coli BL21(DE3) bacteria, for the production of human soluble catechol-O-methyltransferase (hSCOMT), is presented. For the first time, a straightforward model is applied in a recombinant hSCOMT expression system and distinguishes an initial cell growth phase from a protein production phase upon induction. Specifically, the kinetic model predicts biomass, substrate, and product concentrations in the culture over time and was identified from a series of fed-batch experiments designed by testing several feed profiles. The main advantage of this model is that its parameters can be identified more reliably from distinct fed-batch strategies, such as glycerol pulses and exponential followed by constant substrate additions. Interestingly, with the limited amount of data available, the proposed model accomplishes satisfactorily the experimental results obtained for the three state variables, and no exhaustive process knowledge is required. The comparison of the measurement data obtained in a validation experiment with the model predictions showed the great extrapolation capability of the model presented, which could provide new complementary information for the COMT production system.
Keywords
Human soluble catechol-O-methyltransferase; Escherichia coli; fed-batch bioprocess; protein production;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10: 411-421   DOI   PUBMED   ScienceOn
2 Berovic, M. and A. W. Nienow. 2005. Biochemical Engineering Principles. Doctoral/Post-Doctoral level course. Kemijsko Inzenirstvo
3 Bonifacio, M. J., M. A. Vieira-Coelho, and P. Soares-da-Silva. 2001. Expression and characterization of rat soluble catechol-Omethyltransferase fusion protein. Prot. Expr. Purif. 23: 106-112   DOI   ScienceOn
4 Durany, O., C. De Mas, and J. L$\acute{o}$pez-Sant$\acute{i}$n. 2005. Fed-batch production of recombinant fuculose-1-phosphate aldolase in E. coli. Process Biochem. 40: 707-716   DOI   ScienceOn
5 Levisauskas, D., V. Galvanauskas, S. Henrich, K. Wilhelm, N. Volk, and A. L$\ddot{u}$bbert. 2003. Model-based optimization of viral capsid protein production in fed-batch culture of recombinant Escherichia coli. Bioproc. Biosyst. Eng. 25: 255-262   PUBMED   ScienceOn
6 March, J. C., M. A. Eiteman, and E. Altman. 2002. Expression of an anaplerotic enzyme, pyruvate carboxylase, improves recombinant protein production in Escherichia coli. Appl. Environ. Microbiol. 68: 5620-5624   DOI   ScienceOn
7 Panda, A. K., R. H. Khan, K. B. C. Appa Rao, and S. M. Totey. 1999. Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone. J. Biotechnol. 75: 161-172   DOI   ScienceOn
8 Passarinha, L. A., M. J. Bonif$\acute{a}$cio, P. Soares-da-Silva, and J. A. Queiroz. 2008. A new approach on the purification of recombinant human soluble catechol-O-methyltransferase from an Escherichia coli extract using hydrophobic interaction chromatography. J. Chromatogr. A 1177: 287-296   DOI   PUBMED   ScienceOn
9 Tomson, K., T. Paalme, P. S. Laakso, and R. Vilu. 1995. Automatic laboratory-scale fed-batch procedure for production of recombinant proteins using inducible expression systems of Escherichia coli. Biotechnol. Tech. 9: 793-798   DOI   ScienceOn
10 Tsai, L. B., M. Mann, F. Morris, C. Rotgers, and D. Fenton. 1987. The effect of organic nitrogen and glucose on the production of recombinant human insulin-like growth factor in high cell density Escherichia coli fermentations. J. Ind. Biotechnol. 2: 181-187   DOI
11 Ulmanen, I., J. Per$\ddot{a}$nen, J. Tenhunen, C. Tilgmann, T. Karhunen, P. Panula, L. Bernasconi, J. P. Aubry, and K. Lundstr$\ddot{o}$m. 1997. Expression and intracellular localization of catechol-O-methyltransferase in transfected mammalian cells. Eur. J. Biochem. 243: 452-459   DOI   ScienceOn
12 Yee, L. and H. W. Blanch. 1993. Defined media optimisation for growth of recombinant Escherichia coli X90. Biotechnol. Bioeng. 41: 221-230   DOI   PUBMED
13 Svensson, M., I. Svensson, and S. O. Enfors. 2005. Osmotic stability of the cell membrane of Escherichia coli from a temperature-limited fed-batch process. Appl. Microbiol. Biotechnol. 67: 345-350   DOI   ScienceOn
14 Tilgmann, C., K. Melen, K. Lundstrom, A. Jalanko, I. Julkunen, N. Kalkkinen, and I. Ulmanen. 1992. Expression of recombinant soluble and membrane-bound catechol-O-methyltransferase in eukaryotic cells and identification of the respective enzymes in rat brain. Eur. J. Biochem. 207: 813-821   DOI   ScienceOn
15 Lin, H. Y., B. Mathiszik, B. Xu, S. O. Enfors, and P. Neubauer. 2001. Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations of Escherichia coli. Biotechnol. Bioeng. 73: 348-357
16 Pflug, S., S. M. Richter, and V. B. Urlacher. 2007. Development of a fed-batch process for the production of the cytochrome P450 monooxygenase CYP102A1 from Bacillus megaterium in Escherichia coli. J. Biotechnol. 129: 481-488   DOI   ScienceOn
17 Ponce, E. 1999. Effect of growth rate reduction and genetic modifications on acetate accumulation and biomass yields in Escherichia coli. J. Biosci. Bioeng. 87: 775-780   DOI   PUBMED   ScienceOn
18 Suarez, D. C., C. W. Liria, and B. V. Kilikian. 1998. Effect of yeast extract on Escherichia coli growth and acetic acid production. World J. Microbiol. Biotechnol. 14: 331-335   DOI   ScienceOn
19 Faulkner, E., M. Barrett, S. Okor, P. Kieran, E. Casey, F. Paradisi, P. Engel, and B. Glennon. 2006. Use of fed-batch cultivation for achieving high cell densities for the pilot-scale production of a recombinant protein (phenylalanine dehydrogenase) in Escherichia coli. Biotechnol. Prog. 22: 889-897   DOI   ScienceOn
20 Nikerel, I. E., E. T. Oner, B. Kirdar, and R. Yildirim. 2006. Optimization of medium composition for biomass production of recombinant Escherichia coli cells using response surface methodology. Biochem. Eng. J. 32: 1-6   DOI   ScienceOn
21 Xu, B., M. Jahic, and S. O. Enfors. 1999. Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli. Biotechnol. Prog. 15: 81-90   DOI   ScienceOn
22 Bondioli, P. and L. D. Bella. 2005. An alternative spectrophotometric method for the determination of free glycerol in biodiesel. Eur. J. Lipid Sci. Technol. 107: 153-157   DOI   ScienceOn
23 Garc$\acute{i}$a-Junceda, E., G. Shen, T. Sugai, and C. H. Wong. 1995. A new strategy for the cloning, overexpression and one step purification of three DHAP-dependent aldolases: Rhamnulose-1- phosphate aldolase, fuculose-1-phosphate aldolase and tagatose- 1,6-diphosphate aldolase. Bioorg. Med. Chem. 3: 945-953   DOI   ScienceOn
24 Ramirez, D. M. and W. E. Bentley. 1993. Enhancement of recombinant protein synthesis and stability via coordinated aminoacid addition. Biotechnol. Bioeng. 41: 557-565   DOI   ScienceOn
25 Teixeira, A., A. E. Cunha, J. J. Clemente, J. L. Moreira, H. J. Cruz, P. M. Alves, M. J. Carrondo, and R. Oliveira. 2005. Modelling and optimization of recombinant BHK-21 cultivation process using hybrid grey-box systems. J. Biotechnol. 118: 290-303   DOI   ScienceOn
26 Balbas, P. and F. Bolivar. 1990. Design and construction of expression plasmid vectors in Escherichia coli. Meth. Enzymol. 185: 14-37   DOI   PUBMED
27 Strandberg, L. and S. O. Enfors. 1991. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl. Environ. Microbiol. 57: 1669-1674   PUBMED   ScienceOn
28 Chen, R., W. M. G. J. Yap, P. W. Postma, and J. E. Bailey. 1997. Comparative studies of Escherichia coli strains using different glucose-uptake systems: Metabolism and energetics. Biotechnol. Bioeng. 56: 583-590   DOI   ScienceOn
29 Wang, Z. W., W. B. Huang, and Y. P. Chao. 2005. Efficient production of recombinant proteins in Escherichia coli using an improved L-arabinose-inducible T7 expression system. Process Chem. 40: 3137-3142   DOI   ScienceOn
30 Wong, H. H., Y. C. Kim, S. Y. Lee, and H. N. Chang. 1998. Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli. Biotechnol. Bioeng. 60: 271-276   DOI   ScienceOn
31 Kosinski, M. J., U. Rinas, and J. E. Bailey. 1992. Proteolytic response to the expression of an abnormal beta-galactosidase in Escherichia coli. Appl. Microbiol. Biotechnol. 37: 335-341   DOI   ScienceOn
32 Lee, S. Y. 1996. High cell-density culture of Escherichia coli. Trends Biotechnol. 14: 98-105   DOI   ScienceOn
33 Harcum, S. W., D. M. Ramirez, and W. E. Bentley. 1992. Optimal nutrient feed policies for heterologous protein production. Appl. Biochem. Biotechnol. 34: 161-173   DOI
34 Koh, B. T., U. Nakashimada, M. Pfeiffer, and M. G. S. Yap. 1992. Comparison of acetate inhibition on growth of host and recombinant E. coli K12 strains. Biotechnol. Lett. 14: 1115- 1118   DOI
35 Luo, Q., Y. L. Shen, D. Z. Wei, and W. Cao. 2006. Optimization of culture on the overproduction of TRAIL in high-cell-density culture by recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 71: 184-191   DOI   ScienceOn
36 Passarinha, L. A., M. J. Bonif$\acute{a}$cio, and J. A. Queiroz. 2006. The effect of temperature on the analysis of metanephrine for catechol- O-methyltransferase activity assay by HPLC with electrochemical detection. Biomed. Chromatogr. 20: 937-944   DOI   ScienceOn
37 De Mar, L., C. Cimander, A. Elfwing, and P. Hagander. 2007. Feeding strategies for E. coli fermentations demanding an enriched environment. Bioprocess Biosyst. Eng. 30: 13-25   DOI   ScienceOn
38 Jensen, E. B. and S. Carlsen. 1990. Production of recombinant human growth hormone in Escherichia coli: Expression of different precursors and physiological effects of glucose, acetate and salts. Biotechnol. Bioeng. 36: 1-11   DOI   PUBMED
39 Jenzsch, M., R. Simutis, and A. Lübbert. 2006. Generic model control of the specific growth rate in recombinant Escherichia coli cultivations. J. Biotechnol. 122: 483-493   DOI   ScienceOn
40 Andersson, L., S. J. Yang, P. Neabauer, and S. O. Enfors. 1996. Impact of plasmid presence and induction on cellular responses in fed batch cultures of Escherichia coli. J. Biotechnol. 46: 255-263   DOI   ScienceOn
41 Phue, J. N. and J. Shiloach. 2004. Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J. Biotechnol. 109: 21-30   DOI   PUBMED   ScienceOn