Browse > Article
http://dx.doi.org/10.4014/jmb.1204.04020

Long-term Repeated-Batch Operation of Immobilized Escherichia coli Cells to Synthesize Galactooligosaccharide  

Lee, Sang-Eun (Department of Biotechnology, Korea National University of Transportation)
Yeon, Ji-Hyeon (Department of Biotechnology, Korea National University of Transportation)
Jung, Kyung-Hwan (Department of Biotechnology, Korea National University of Transportation)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.11, 2012 , pp. 1486-1493 More about this Journal
Abstract
In this study, we investigated whether galactooligosaccharide (GOS) can be stably and steadily synthesized using immobilized ${\beta}$-galactosidase (${\beta}$-gal) inclusion body (IB)-containing E. coli cells during long-term repeated-batch operation. To improve the operational stability of this enzyme reactor system, immobilized E. coli cells were crosslinked with glutaraldehyde (GA) after immobilization of the E. coli. When we treated with 2% GA for E. coli crosslinking, GOS production continued to an elapsed time of 576 h, in which seven batch runs were operated consecutively. GOS production ranged from 51.6 to 78.5 g/l ($71.2{\pm}10.5$ g/l, n = 7) during those batch operations. In contrast, when we crosslinked E. coli with 4% GA, GOS production ranged from 31.5 to 64.0 g/l ($52.3{\pm}10.8$, n = 4), and only four consecutive batch runs were operated. Although we did not use an industrial ${\beta}$-gal for GOS production, in which a thermophile is used routinely, this represents the longest operation time for GOS production using E. coli ${\beta}$-gal. Improved stability and durability of the cell immobilization system were achieved using the crosslinking protocol. This strategy could be directly applied to other microbial enzyme reactor systems using cell immobilization to extend the operation time and/or improve the reactor system stability.
Keywords
${\beta}$-Galactosidase; galactooligosaccharide; immobilization; glutaraldehyde; repeated-batch operation; Escherichia coli;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Rabiu, B. A., A. J. Jay, G. R. Gibson, and R. A. Rastall. 2001. Synthesis and fermentation properties of novel galactooligosaccharides by ${\beta}$-galactosidases from Bifidobacterium species. Appl. Environ. Microbiol. 67: 2526-2530.   DOI   ScienceOn
2 Reithmeier, R. A. F. and P. D. Bragg. 1977. Cross-linking of the proteins in the outer membrane of Escherichia coli. Biochim. Biophys. Acta Biomembranes 466: 245-256.   DOI   ScienceOn
3 Robyt, J. F. and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-201.
4 Sakai, T., H. Tsuji, S. Shibata, K. Hayakawa, and K. Matsumoto. 2008. Repeated-batch production of galactooligosaccharides from lactose at high concentration by using alginate-immobilized cells of Sporobolomyces singularis YIT 10047. J. Gen. Appl. Microbiol. 54: 285-293.   DOI   ScienceOn
5 Yakup, A. and A. Tanr seven. 2007. Immobilization of Pectinex Ultra SP-L to produce galactooligosaccharides. J. Mol. Catal. B Enzym. 45: 73-77.   DOI   ScienceOn
6 Yeon, J.-H. and K.-H. Jung. 2010. Operation of packed-bed immobilized cell reactor featuring active ${\beta}$-galactosidase inclusion body-containing recombinant Escherichia coli cells. Biotechnol. Bioprocess Eng. 15: 822-829.   DOI   ScienceOn
7 Yeon, J.-H. and K.-H. Jung. 2011. Repeated-batch operation of immobilized ${\beta}$-galactosidase inclusion bodies-containing Escherichia coli cell reactor for lactose hydrolysis. J. Microbiol. Biotechnol. 21: 972-978.   DOI   ScienceOn
8 Zheng, P., H. Yu, Z. Sun, Y. Ni, W. Zhang, Y. Fan, and Y. Xu. 2006. Production of galacto-oligosaccharides by immobilized recombinant ${\beta}$-galactosidase from Aspergillus candidus. Biotechnol. J. 1: 1464-1470.   DOI   ScienceOn
9 Jung, K.-H., J.-H. Yeon, S.-K. Moon, and J. H. Choi. 2008. Methyl ${\alpha}$-D-glucopyranoside enhances the enzymatic activity of recombinant ${\beta}$-galactosidase inclusion bodies in the araBAD promoter system of Escherichia coli. J. Ind. Microbiol. Biotechnol. 35: 695-701.   DOI   ScienceOn
10 Lee, S.-E., H.-B. Seo, H.-J. Kim, J.-H. Yeon, and K.-H. Jung. 2011. Galactooligosaccharide synthesis by active ${\beta}$-galactosidase inclusion bodies-containing Escherichia coli cells. J. Microbiol. Biotechnol. 21: 1151-1158.   DOI   ScienceOn
11 Li, Z., M. Xiao, L. Lu, and Y. Li. 2008. Production of nonmonosaccharide and high-purity galactooligosaccharides by immobilized enzyme catalysis and fermentation with immobilized yeast cells. Process Biochem. 43: 896-899.   DOI   ScienceOn
12 Mahoney, R. R. 1998. Galactosyl-oligosaccharide formation during lactose hydrolysis: A review. Food Chem. 63: 147-154.   DOI   ScienceOn
13 Martínez-Villaluenga, C., A. Cardelle-Cobas, N. Corzo, A. Olano, and M. Villamiel. 2008. Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by beta-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem. 107: 258-264.   DOI   ScienceOn
14 Nakkharat, P. and D. Haltrich. 2006. Lactose hydrolysis and formation of galactooligosaccharides by a novel immobilized ${\beta}$- galactosidase from the thermophilic fungus Talaromyces thermophilus. Appl. Biochem. Biotechnol. 129-132: 215-225.
15 Mladenoska, I., E. Winkelhausen, and S. Kuzmanova. 2008. Transgalactosylation/hydrolysis ratios of various beta-galactosidases catalyzing alkyl-beta-galactoside synthesis in single-phased alcohol media. Food Technol. Biotechnol. 463: 311-316.
16 Nagalakshmi, V. and J. S. Pai. 1994. Permeabilization of Escherichia coli cells for enhanced penicillin acylase activity. Biotechnol. Tech. 8: 431-434.   DOI   ScienceOn
17 Nahalka, J., A. Vikartovska, and E. Hrabarova. 2008. A crosslinked inclusion body process for sialic acid synthesis. J. Biotechnol. 134: 146-153.   DOI   ScienceOn
18 Neri, D. F. M., V. M. Balcao, R. S. Costa, I. C. A. P. Rocha, E. M. F. C. Ferreira, D. P. M. Torres, et al. 2009. Galactooligosaccharides production during lactose hydrolysis by free Aspergillus oryzae ${\beta}$-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem. 115: 92-99.   DOI   ScienceOn
19 Neri, D. F. M., V. M. Balcao, F. O. Q. Dourado, J. M. B. Oliveira, L. B. Carvalho Jr., and J. A. Teixeira. 2009. Galactooligosaccharides production by ${\beta}$-galactosidase immobilized onto magnetic polysiloxane-polyaniline particles. React. Funct. Polym. 69: 246-251.   DOI   ScienceOn
20 Prabhune, A. A., B. S. Rao, A. V. Pundle, and H. SivaRaman. 1992. Immobilization of permeabilized Escherichia coli cells with penicillin acylase activity. Enzyme Microb. Technol. 14: 161-163.   DOI   ScienceOn
21 Pocedi ova, K., L. Curda, D. Misu, A. Dryakova, and L. Diblíkova. 2010. Preparation of galacto-oligosaccharides using membrane reactor. J. Food Eng. 99: 479-484.   DOI   ScienceOn
22 Chen, C. W., C. C. Ou-Yang, and C. W. Yeh. 2003. Synthesis of galactooligosaccharides and transgalactosylation modeling in reverse micelles. Enzyme Microb. Technol. 33: 497-507.   DOI   ScienceOn
23 Asraf, S. S. and P. Gunasekaran. 2010. Current trends of ${\beta}$-galactosidase research and application, pp. 880-890. In A. Mendez-Vilas (ed.). Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Center, Badajoz, Spain.
24 Botelho-Cunha, V. A., M. Mateus, J. C. C. Petrus, and M. N. de Pinho. 2010. Tailoring the enzymatic synthesis and nanofiltration fractionation of galacto-oligosaccharides. Biochem. Eng. J. 50: 29-36.   DOI   ScienceOn
25 Cardelle-Cobas, A., M. Villamiel, A. Olano, and N. Corzo. 2008. Study of galacto-oligosaccharide formation from lactose using Pectinex Ultra SP-L. J. Sci. Food Agric. 88: 954-961.   DOI   ScienceOn
26 Crittenden, R. G. and M. J. Playne. 1996. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Technol. 7: 353-361.   DOI   ScienceOn
27 Ebrahimi, M., L. Placido, L. Engel, K. S. Ashaghi, and P. Czermak. 2010. A novel ceramic membrane reactor system for the continuous enzymatic synthesis of oligosaccharides. Desalination 250: 1105-1108.   DOI   ScienceOn
28 Gosling, A., G. W. Stevens, A. R. Barber, S. E. Kentish, and S. L. Gras. 2010. Recent advances refining galactooligosaccharide production from lactose. Food Chem. 121: 307-318.   DOI   ScienceOn
29 Huber, R. E., G. Kurz, and K. Wallenfels. 1976. A quantitation of the factors which affect the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) on lactose. Biochemistry 15: 1994-2001.   DOI   ScienceOn
30 Hughes, R. C. and P. F. Thurman. 1970. Cross-linking of bacterial cell walls with glutaraldehyde. Biochem. J. 199: 925-926.
31 Jung, K.-H. 2008. Enhanced enzyme activities of inclusion bodies of recombinant ${\beta}$-galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. 18: 434-442.
32 Juers, D. H., S. Hakda, B. W. Matthews, and R. E. Huber. 2003. Structural basis for the altered activity of Gly794 variants of Escherichia coli beta-galactosidase. Biochemistry 42: 13505- 13511.   DOI   ScienceOn