• Title/Summary/Keyword: Base metal alloys

Search Result 130, Processing Time 0.023 seconds

Comparison of dental porcelain baking methods by base-alloy and bonding strength by thermocycling (Base-Alloy에 따른 치과 도재의 소성방법과 열순환에 따른 결합강도 비교)

  • Kim, Im-Sun;Min, Kyung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.772-779
    • /
    • 2010
  • This study measured the bonding strength of various porcelain prosthesis materials before and after thermocycling to select prosthesis materials that can maximize beauty and tolerance. To measure bonding strength, various porcelain materials were baked on with-Beryllium metals, non-Beryllium metals 8group and Zirconia 1 group among commercially available base alloys, and measured the bonding strength was measured before and after thermocycling. The findings of this study are as follows: 1) PTM(press-to-metal) porcelain non-Beryllium metal showed the, highteat bonding strength each 73.2MPa, 59.2MPa before and after thermocycling. 2) The porcelain materials baked on non-Beryllium metal showed higher bonding strength before and after thermocycling than those baked on with-Beryllium metal. 3) Zirconia products showed the lowest 38.7MPa bonding strength before and after thermocycling.

AN EXPERIMENTAL STUDY ON THE RESIDUAL STRESS AND BOND STRENGTH OF CERAMO-METAL SYSTEM (치과도재용(齒科陶材用) 합금(合金)과 도재간(陶材間)의 잔류응력(殘溜應力) 및 결합강도(結合强度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Gi-Jin;Bae, Tae-Seong;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.67-84
    • /
    • 1991
  • This study was carried out to investiagate the residual stress caused by the mismatch of thermal expansion and the bond failure resistance of alloy-porcelain specimens. The thermal expansions of alloys and porcelains were measured by using a straight push-rod dilatometer. Porcelain glass transition temperatures, thermal expansion coefficients, and thermal compatibility indices were derived from length-versus-temperature curves. Strain gauges were used to experimentally determine the Young's moduli of porcelains, the residual stresses of porcelain surface, and tensile bond strengths of the specimens of simulated porcelain metal crown. The obtained results were as follows: 1. The coefficients of thermal expansion for alloys were the minimum of $13.53\mu/^{\circ}C$ and the maximum of $20.11\mu/^{\circ}C$ in the range of $100\sim600^{\circ}C$ and those for porcelains were the minimum of $7.72\mu/^{\circ}C$ and the maximum of $31.24\mu/^{\circ}C$ in the range of $100\sim500^{\circ}C$. 2. The glass transition temperature of porcelains exhibited the same value without my relation to the healing rate, and the thermal disharmony of porcelain and alloy was more affected by porcelains than by the alloys. 3. The Young's moduli of body porcelains were larger than those of opaque porcelains(P<0.01) 4. It seemed that the residual stresses of porcelain surfaces in the porcelainalloy systems were more affected by porcelains than by alleys. 5. The bond strengths of the procelain-base metal alloy systems were larger than those of the porcelain-precious metal alloy systems. The fracture strengths of porcelain surfaces showed significant difference between porcelains (P<0.05).

  • PDF

A STUDY ON THE TENSILE STRENGTH BETWEEN METAL DENTURE BASE AND RELINING MATERIALS (의치 재이장 재료와 금속의치상간의 결합력에 관한 연구)

  • Lee, Joon-Seok;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • Relining and rebasing are essential for long-term success and oral health in removable prosthodontics. Major features of failures between metal base and relining resins are adhesive failure due to lack of chemical bonding. The purpose of this study was to find a better metal primer and metal surface treatment method that enhance the bonding strength with relining resin materials. The surfaces of ticonium alloys were treated with $25{\mu}m$ sandblasting (Group A), stone wheel(Group B), stone wheel and EZ oxisor(Group C), $75{\mu}m$ sandblasting(Group D) and EZ oxisor application after $75{\mu}m$ sandblasting(Group E). They were subdivided into no primer application (Group I), MR bond application(Group II) and Metafast bonding liner (Group III). Then specimens were completed though being bonded with relining resins. The specimens were stored in $38^{\circ}C$ water for 48 hours and tensile strength was measured using the universal testing machine. The results were as follows, 1. Primer application groups showed higher bond strength than no primer application group(p<0.05). 2. In comparison with primer application groups, MR bond group showed higher bond strength than Meta fast bonding liner application group(p<0.05). 3. In comparison with surface treatment methods, Bond strengths of group A and B were significantly different with group C, D, and E, and group C were significantly different with group D, and E in no primer application group()(0.05). In primer application groups, group A, B, C were significantly different with group D and E(p<0.05). According to results of this study, Metal primer application and metal surface roughening were considered to be advantageous for relining of metal base dentures.

  • PDF

Effects of Drawing Parameters on Mechanical Properties of BAS121 Alloy Tubes for Heat-exchangers by High Frequency Induction Welding (고주파유도용접된 열교환기용 BAS121합금튜브의 기계적 특성에 미치는 인발조건의 영향)

  • Han Sang-Woo;Kim Byung-Il;Lee Hyun-Woo;Chon Woo-Young;Gook Jin-Seon
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.851-856
    • /
    • 2004
  • The aim of this study is to investigate the optimum drawing parameter for BAS121 welded tubes. The BAS121 aluminium alloy tubes with 25 mm in external diameter and 1.3 mm in thickness for heat-exchangers were manufactured by high frequency induction welding with the V shaped convergence angle $6.5^{\circ}$ and power input 55 kW. With increasing the reduction of area ($13,\;21\%$) by drawing, tensile strength was increased and elongation was decreased. With increasing the reduction of area by drawing, hardness in weld metal increased rapidly, while that of base metal increased slowly. In the specimen with the outer diameter smaller than 22 mm, hardness of weld metal was higher than that of base metal. The optimum drawing parameter of area reduction in BAS121 alloys was estimated about $13\%$ because of the work hardening of welds.

EFFECT OF GOLD ELECTRODEPOSIT OF PD-AG, NI-CR ALLOYS ON THE COLOR OF VENERRED RESIN (Pd-Ag 및 Ni-Cr 합금의 금 전착이 전장 레진의 색채에 미치는 영향)

  • Yang, Hong-So;Park, Yeong-Joon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.645-661
    • /
    • 1995
  • As the mechanical property of composite resin improved, composite resin has been widely used esthetic dentistry. In the field of esthetic dentistry, the color of prosthetic material is very important. The purpose of this study was to evaluate the color difference of specimens, by the types of alloys and gold electrodeposit. Experimental groups were as follows : Group Prec : Au-Pt alloy with no gold coating and no resin veneer. Group Semi : Pd-Ag alloy with no gold coating and no resin veneer. Group BAse : Ni-Cr alloy with no gold coating and no resin veneer. Group Gsem : Pd-Ag alloy with no gold coating and no resin veneer. Group Gbas : Ni-Cr alloy with no gold coating and no resin veneer. Group PreR : Resin veneer on the Pd-Ag alloy without gold coating. Group SemR : Resin veneer on the Pd-Ag alloy without gold coating. Group GbsR : Resin veneer on the Ni-Cr alloy with gold coating Group BasR : Resin veneer on the Ni-Cr alloy without gold coating. In this study, colors of metal surfaces and veneered resins were evaluated by the CIE $L^{*}a^{*}b$ system. The results obtained were as follows : 1. different alloy types and gold coating make the $L^{*}a^{*}b$ system. 2. The ${\Delta}E^*$ab value between groups semi and Base was less than 1.5 and there was no $a^*$ and $b^*$ value difference between groups Gsem and Gbas 3. The values of $L^*$ and $a^*$ ain groups GsemR and GbasR were so similar that the ${\Delta}E^*$ab value was as small as 0.58. 4. In resin specimens with gold coated semiprecious or base alloys showed yellower and redder deviation than the resin specimens with precious alloy. 5. The ${\Delta}E^*$ab values between goups PreR-GsemR and groups PreR-GbasR were as small as 2.68 and 2.22 respectively.

  • PDF

Shear bond strength of veneering porcelain to zirconia and metal cores

  • Choi, Bu-Kyung;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.129-135
    • /
    • 2009
  • STATEMENT OF PROBLEM. Zirconia-based restorations have the common technical complication of delamination, or porcelain chipping, from the zirconia core. Thus the shear bond strength between the zirconia core and the veneering porcelain requires investigation in order to facilitate the material's clinical use. PURPOSE. The purpose of this study was to evaluate the bonding strength of the porcelain veneer to the zirconia core and to other various metal alloys (high noble metal alloy and base metal alloy). MATERIAL AND METHODS. 15 rectangular ($4\times4\times9mm$) specimens each of zirconia (Cercon), base metal alloy (Tillite), high noble metal alloy (Degudent H) were fabricated for the shear bond strength test. The veneering porcelain recommended by the manufacturer for each type of material was fired to the core in thickness of 3mm. After firing, the specimens were embedded in the PTFE mold, placed on a mounting jig, and subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.5mm/min until fracture. The average shear strength (MPa) was analyzed with the oneway ANOVA and the Tukey's test ($\alpha$= .05). The fractured specimens were examined using SEM and EDX to determine the failure pattern. RESULTS. The mean shear strength ($\pm\;SD$) in MPa was 25.43 ($\pm\;3.12$) in the zirconia group, 35.87 ($\pm\;4.23$) in the base metal group, 38.00 ($\pm\;5.23$) in the high noble metal group. The ANOVA showed a significant difference among groups, and the Tukey' s test presented a significant difference between the zirconia group and the metal group. Microscopic examination showed that the failure primarily occurred near the interface with the residual veneering porcelain remaining on the core. CONCLUSION. There was a significant difference between the metal ceramic and zirconia ceramic group in shear bond strength. There was no significant difference between the base metal alloy and the high noble metal alloy.

Mechanical and electrochemical characteristics with welding materials in robotic MIG welding of dissimilar Al alloys (이종 알루미늄 합금의 로봇 미그 용접 시 용접재료에 따른 기계적 및 전기화학적 특성 평가)

  • Kim, Seong Jong;Han, Min Su;Woo, Yong Bin
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.245-252
    • /
    • 2013
  • In this study, mechanical and electrochemical characteristics with welding material in MIG welded with ROBOT for dissimilar Al alloys were investigated using various experiment methods. The MIG welding by ROBOT with ER5183 and ER5556 for the 5456-H116 and 6061-T6 Al alloy were carried out. The hardness of welding zone was lower than that of base metal. In electrochemical experiment, ER5183 welding material presented excellent characteristics. The yield strength and maximum tensile strength in welding with welding material of ER5183 presented lower value than those of ER5556. The elongation and time-to-fracture showed the opposite results.

FRICTION STIR WELDING OF MAGNESIUM ALLOYS

  • Kazuhiro Nakata;Kim, Young-Gon;Masao Ushio
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.511-515
    • /
    • 2002
  • Extruded and cast plates of AZ type magnesium alloys were successfully joined by friction stir welding (FSW). Effect of FSW conditions on the formation of the defect was revealed in relation to tool rotation speed and specimen travel speed. Magnesium alloy with higher aluminum content became difficult to be joined and the optimum condition without defect was restricted into narrow condition range. The structure of the stirred zone was a fine-grained recrystallized structure even in the case of cast AZ91D. FSW joint had better mechanical properties than those of GTA welded joint. Especially the toughness of the stirred zone increased more than that of the base metal.

  • PDF

Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel (Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가)

  • Kim, Hong-Eun;Lee, Ki-Hyoung;Kim, Min-Chul;Lee, Ho-Jin;Kim, Keong-Ho;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.