• Title/Summary/Keyword: Bargaining Solution

Search Result 45, Processing Time 0.029 seconds

A Cross-Layer Approach to Fair Resource Allocation for Multimedia Service in WiMAX

  • Hong, Seok-Hoon;Lee, Yong-Hun;Jung, Jae-Yoon;Suh, Doug-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1006-1022
    • /
    • 2010
  • In this paper, a cross-layer resource allocation mechanism is proposed for wireless multimedia service. In particular, a game theory based on quality of service (QoS) for multimedia users is introduced to deal with the fairness of network resource allocation in wireless networks. Moreover, the channel states of wireless users are additionally regarded under the cross-layer design in WiMAX environment. In details, the bargaining solution is adopted to discover the efficient and fair resource allocation strategy for multimedia service in considering QoS in the peak signal-to-noise ratio (PSNR) and the channel states in the carrier-to-interface ratio (CINR). The proposed mechanism is illustrated and evaluated by simulation results of transmitting video sequences in WiMAX environment.

A study on the nash equilibrium of the price of insurance

  • Min, Jae-Hyung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1992.04b
    • /
    • pp.403-412
    • /
    • 1992
  • This note examines a situation where a risk-neutral insurer and a risk-averse individual (prospective insured) negotiate to reach an arbitration point of the price of insurance over the terms of an insurance contract in order to maximize their respective self-interests. The situation is modeled as a Nash bargaining problem. We analyze the dependence of the price of insurance, which is determined by the Nash solution, on the parameters such as the size of insured loss, the probability of a loss, the degree of risk-aversion of the insured, and the riskiness of loss distribution.

  • PDF

A Study about Frequency Interference among Clusters with Game Theory (게임이론을 이용한 클러스터 간 주파수 간섭 문제 연구)

  • Shin, Hyun-Chul;Lee, Dong-Yul;Lee, Chae-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.269-278
    • /
    • 2010
  • In the clustering protocol, lifetime of the cluster members radically decrease because frequency interference between clusters make every cluster member consume a lot of energy to maintain or increase its transmission rate. In this paper, we analyze the frequency interference among the clusters with the game theory which deals with resource bargaining problems between players, and present a rational power allocation strategy. Both the cases that each cluster tries to selfishly occupy and cooperatively share the resource are analyzed in terms of non-cooperative and cooperative games. In simulation, we compare the cooperative game with non-cooperative game in terms of the node lifetime.

A Bandwidth Allocation Scheme using NBS in a Multiservice Networks (멀티서비스 네트워크에서 NBS를 이용한 대역폭 할당 기법)

  • Park, Jae-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.66-71
    • /
    • 2012
  • In this paper, using the bargaining game theory, we propose a bandwidth management scheme that allocates bandwidth in an efficient and proportionally fair manner between the service classes with different service requirements. Since the traffic input rates of the classes are asymmetric in most of the time, the proposed scheme allocates bandwidth in proportion to the traffic input rates to increase the bandwidth utilization while protecting the quality of service of a class against the excessive traffic input of the other classes. In addition, the proposed method considers the weights of classes so that the bandwidth is allocated differentially among the classes.

Resource Allocation for Cooperative Relay based Wireless D2D Networks with Selfish Users

  • Niu, Jinxin;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.1996-2013
    • /
    • 2015
  • This paper considers a scenario that more D2D users exist in the cell, they compete for cellular resources to increase their own data rates, which may cause transmission interference to cellular users (CU) and the unfairness of resource allocation. We design a resource allocation scheme for selfish D2D users assisted by cooperative relay technique which is used to further enhance the users' transmission rates, meanwhile guarantee the QoS requirement of the CUs. Two transmission modes are considered for D2D users: direct transmission mode and cooperative relay transmission mode, both of which reuses the cellular uplink frequency resources. To ensure the fairness of resource distribution, Nash bargaining theory is used to determine the transmission mode and solve the bandwidth allocation problem for D2D users choosing cooperative relay transmission mode, and coalition formation game theory is used to solve the uplink frequency sharing problem between D2D users and CUs through a new defined "Selfish order". Through theoretical analysis, we obtain the closed Nash bargaining solution under CUs' rate constraints, and prove the stability of the formatted coalition. Simulation results show that the proposed resource allocation approach achieves better performance on resource allocation fairness, with only little sacrifice on the system sum rates.

Tradeoff between Energy-Efficiency and Spectral-Efficiency by Cooperative Rate Splitting

  • Yang, Chungang;Yue, Jian;Sheng, Min;Li, Jiandong
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2014
  • The trend of an increasing demand for a high-quality user experience, coupled with a shortage of radio resources, has necessitated more advanced wireless techniques to cooperatively achieve the required quality-of-experience enhancement. In this study, we investigate the critical problem of rate splitting in heterogeneous cellular networks, where concurrent transmission, for instance, the coordinated multipoint transmission and reception of LTE-A systems, shows promise for improvement of network-wide capacity and the user experience. Unlike most current studies, which only deal with spectral efficiency enhancement, we implement an optimal rate splitting strategy to improve both spectral efficiency and energy efficiency by exploring and exploiting cooperation diversity. First, we introduce the motivation for our proposed algorithm, and then employ the typical cooperative bargaining game to formulate the problem. Next, we derive the best response function by analyzing the dual problem of the defined primal problem. The existence and uniqueness of the proposed cooperative bargaining equilibrium are proved, and more importantly, a distributed algorithm is designed to approach the optimal unique solution under mild conditions. Finally, numerical results show a performance improvement for our proposed distributed cooperative rate splitting algorithm.

Game Theoretic Analysis for RFID Reader Collision (RFID 리더 주파수 간섭에 대한 게임 이론 관점에서의 해석)

  • Lee, Dong-Yul;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.36-47
    • /
    • 2009
  • There exists RFID reader-to reader frequency which can not recognize tag in dense reader nude because the interference causes low SIR. To solve this frequency, the many algorithms based on TDM have been proposed. But the most of existing algorithms not obtain the optimal time allocation but propose heuristic scheduling algorithm. In this paper, we apply game theory which deals with interest between players of game to RFID reader-to reader interference and analyze the time allocation problem of reader based on TDM in terms of cooperative game which the players bind agreements using Nash Bargaining Solution(NBS) and non-cooperative game which the players do not bind agreements using Nash Equilibrium(NE). The applied results show that in dense reader mode, NBS of cooperative game is superior to NE of non-cooperative game and present optimal time allocation in dense reader mode.

A Game Theoretic Cross-Layer Design for Resource Allocation in Heterogeneous OFDMA Networks

  • Zarakovitis, Charilaos C.;Nikolaros, Ilias G.;Ni, Qiang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.50-64
    • /
    • 2012
  • Quality of Service (QoS) and fairness considerations are undoubtedly essential parameters that need to be considered in the design of next generation scheduling algorithms. This work presents a novel game theoretic cross-layer design that offers optimal allocation of wireless resources to heterogeneous services in Orthogonal Frequency Division Multiple Access (OFDMA) networks. The method is based on the Axioms of the Symmetric Nash Bargaining Solution (S-NBS) concept used in cooperative game theory that provides Pareto optimality and symmetrically fair resource distribution. The proposed strategies are determined via convex optimization based on a new solution methodology and by the transformation of the subcarrier indexes by means of time-sharing. Simulation comparisons to relevant schemes in the literature show that the proposed design can be successfully employed to typify ideal resource allocation for next-generation broadband wireless systems by providing enhanced performance in terms of queuing delay, fairness provisions, QoS support, and power consumption, as well as a comparable total throughput.

  • PDF

A Nash Bargaining Solution of Electric Power Transactions Embedding Transmission Pricing in the Competitive Electricity Market

  • Kang, Dong-Joo;Kim, Balho H.;Chung, Koo-Hyung;Moon, Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.42-46
    • /
    • 2003
  • The economic operation of a utility in a deregulated environment brings about optimization problems different from those in vertically integrated one[1]. While each utility operates its own generation capacity to maximize profit, the market operator (or system operator) manages and allocates all the system resources and facilities to achieve the maximum social welfare. This paper presents a sequential application of non-cooperative and cooperative game theories in analyzing the entire power transaction process.

Cognitive Radio Anti-Jamming Scheme for Security Provisioning IoT Communications

  • Kim, Sungwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4177-4190
    • /
    • 2015
  • Current research on Internet of Things (IoT) has primarily addressed the means to enhancing smart resource allocation, automatic network operation, and secure service provisioning. In particular, providing satisfactory security service in IoT systems is indispensable to its mission critical applications. However, limited resources prevent full security coverage at all times. Therefore, these limited resources must be deployed intelligently by considering differences in priorities of targets that require security coverage. In this study, we have developed a new application of Cognitive Radio (CR) technology for IoT systems and provide an appropriate security solution that will enable IoT to be more affordable and applicable than it is currently. To resolve the security-related resource allocation problem, game theory is a suitable and effective tool. Based on the Blotto game model, we propose a new strategic power allocation scheme to ensure secure CR communications. A simulation shows that our proposed scheme can effectively respond to current system conditions and perform more effectively than other existing schemes in dynamically changeable IoT environments.