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A Nash Bargaining Solution of Electric Power Transactions Embedding
Transmission Pricing in the Competitive Electricity Market

Dong-Joo Kang*, Balho H. Kim**, Koo-Hyung Chung** and Young-Hwan Moon*

Abstract - The economic operation of a utility in a deregulated environment brings about optimiza-
tion problems different from those in vertically integrated one [1]. While each utility operates its own
generation capacity to maximize profit, the market operator (or system operator) manages and allocates
all the system resources and facilities to achieve the maximum social welfare. This paper presents a
sequential application of non-cooperative and cooperative game theories in analyzing the entire power

transaction process.
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1. Introduction

Competitive electricity markets can be analyzed with
game theory. The energy bidding game in a power pool can
be considered a non-cooperative game in that each partici-
pant competes to win more profit than the others. On the
contrary, it is also regarded as cooperative game in that the
participants need to cooperate to apply the result of the
bidding game or to accomplish a common profit in the
physically interconnected power system. The meaning of
“cooperative” in the previous sentence is not collusion but
an adjusting process by market operators (MOs) or system
operators (SOs) or the bilateral contract between two mar-
ket participants besides the scheduled dispatch by bidding
only when allowed. The models in a competitive electricity
market can be categorized as pool, bilateral, and a hybrid
of the two. This paper chooses the hybrid model to realize
an open market situation.

2. Non-Cooperative Energy Bidding Game

Competition in the restructured electricity market re-
quires the market players to build a strategy to maximize
their own profit, while cost minimization was the ultimate
goal in vertically integrated utilities [2,3]. To analyze the
behavior of a profit maximizing utility, we define the pro-
duction cost function and the profit function as follows:

C(P)=a,+bP+cF’ )
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PE(Rallocated) - pMCPBallmrmed_ q (Pia”mﬂted) (2)

where p, is the bid price, C, is the cost function of the
ith generator, PF is the profit function of the ith generator,
P, is the generation quantity of the ith generator,
Pecaed i the allocated quantity in a bidding, and p,,.,

is the market clearing price. The steps of solution process
are shown in Fig. 1.
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Fig. 1 Overall solution process

In addition, the electricity demand responding to the spot
price is assumed to be

D, =Dy, - Spyce - ©)

Here, D is the initial letter of demand; Index ¢ indicates
the t-th bidding stage in periodically repeated bidding
process; Dy is the initial demand; and S is the elasticity of
demand depending on Market Clearing Price (MCP). The
dimension of demand is [MW] and the dimension of the
MCP is [won/MW].
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For mathematical simplification, only two generators are
assumed to participate in the market. Then we expect the
following three cases.

| D pi>py i) p<p, i) p=p,

p, is the bid price offered by Generator A and p, is the
bid price offered by Generator B.

i) p,>py O i) p,<py
If p,> p,,then the market price, p,, .., is determined

as p,,and the market demand at p, is
D, =Dy = Spce - )

Generator B comes to have the optimal generation quan-
tity, P, , by the condition APF,/0P, =0 maximizing its
own profit. The Allocated volume for utility A in the mar-
ket is the rest volume after B’s dispatch.

Consequently, the optimal bidding strategies of the two
utilities, A and B, are given as follows.

A’s strategy : (pa*, Py = D, - Pg*)
B’s strategy : {og. Ps*)

i) p,=p,

In this case, there exists no equilibrium point because
one utility can make more benefit by modifying its own
bidding strategy.However, on rare occasions, the bid prices
submitted by generators are equal. So it is possible that we
neglect that rare case.

3. Nash Bargaining Problem

In this section, we apply the Nash bargaining solution in
adjusting the Nash equilibrium point, obtained by solving
the non-cooperative game in Section 2, to reflect system
constraints like transmission capacity. The main features of

the Nash Bargaining Game formulation are as follows [4,5].

1) The outcome of the cooperative game satisfying the
Nash bargaining game’s axioms could be characterized by
the following mathematical maximization problem.

Maximize (x—a)"(y—b)" subjecttoy=rf(x)
2) The objective function is the polynomial in which

each term is a product of individual profit functions subject
to a common contract.

3) In formulating the profit function, the generation
quantity in formulating the Nash bargaining game has two

kinds of components. One is the preliminary quantity cal-
culated from the previous section, and the other is the ad-
justment, to be added to or subtracted from the initial solu-
tion, to satisfy system constraints.

4) The willingness-to-pay price for purchasing transac-
tion power from another generator is considered another
variable in addition to generation power quantity and
transaction power quantity of the objective function.

5) The final result should be Pareto Optimal so that no
generator would change or withdraw from the equilibrium
point for better profit.

The Nash bargaining problem between i and j is gener-
ally formulated as

Max > T8} (p;.T;) )

kek i.f

Where R(/; (p,'ja T:,) = pijI:j - Ci(Pgi + Ty) + Ci(Pgi) and
with the following definitions:

R s the profit function of contract &,

K is the number of contracts,

i, j are generators under contract K,

p; is the transaction price per unit of transaction, T,,
T, is the transaction power generated by generator I
and purchased by ; ,

P is the power generated by generator i, and

gi
C, is the generation cost of generator .

T), and p,, indicate the transaction quantity and price,
respectively. The Nash bargaining problem between the
two players is denoted by R2(p12,712). According to Eq. (5),
the two-generator bargaining problem is described as

L=max (R, R;) (6)
Where

Ri=prTi2- Ci(Pg+T12) + Ci (Pg)
Ry=-prTi3- Ci (Pga-Tiz) + G (Py)

The first term in R and R, is the payment for a given

transaction, and the second term is the change in the area
operation cost owing to the transaction. Each generator has
a constrained generation capacity, and profits are con-
strained by the condition R >0 and R, >0, indicating
that negative profit is unacceptable. When there are no
transactions, it means no adjustments are made to the ini-
tial solution determined by the bidding game in Section 2.
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4. Case Study

In this section, we analyze the game situation described
in Sections 1 and 2. The two-bus and two-generator system
is illustrated in Fig. 2. And the data of the two generators

are given in Table 1.
Ep Ey

Fig. 2 Two-bus and two-generator system

Table 1 The parameters of the two generators

Table 2 The equilibrium point from the strategies of the
two generators

Cost Coefficient Gen. Limit
Player ;
a, b, ¢ Min | Max
Gen. A 0 6.0 0.22 10 250
Gen. B 0 2.0 0.42 20 200
D, =450, S§=1.5

In Table 1, Dy and S indicate the initial system demand
and demand elasticity, respectively. If the market clearing
price, p, .., is determined as p,, the optimal bidding

price of B, -, is calculated from OPF,/p, =0.

,D* :25/24(D0 +58,+2D,5¢,) + ¢, by +b, +20,(Sh + D) 1+c5b, (7
? 43 (S+5%c,)+2c,(1+25¢,) +c,

From Eq. (7), we obtain p; = 98 .03 , the optimal bid-

ding price of generator B. Because generator A offered a
lower bidding price than B, A was allocated optimal quan-

tity P, =94 from F,=(p,-b,)/2c,. Finally, p, should
satisfy the upper boundary as follows.

D,—-P 20
0, < 2Dy, + b,
47 28c, +1

This is calculated to p, < 116 , so we come to know
Py = 98.03 satisfies this condition. This calculated market

clearing price determines market demand. The profit func-
tion of generator A at this time is

1 2
PFA'__Z_(pB_bA)~_aA ®)

Cp

and the final results are arranged in Table 2.

A’s best strategy | B’s best strategy
o) . ' 98.03
(Pa, Pp) (209, -) (.9
Dt 303
(PF4, PFg) (9624.45, 5315.7)

This result must be applied in the power system subject
to physical and economic constraints. Therefore, we need a
re-optimization procedure for the Nash bargaining solution
to obtain the final adjusted solution considering those con-
straints. In this paper, we only reflect the usage cost based
transmission pricing proportional to the transmission ca-
pacity used. So the transmission price is assumed to be
specified as $100/MWh. Fig. 3 describes the results of the
non-cooperative Nash game solved in Section 2.
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Fig. 3 Two-bus and two-generator system

The Nash bargaining game is formulated in accordance
with Egs. (5) and (6).

L=max (R;" R;) C)
subject to

Ri=p1T12-C\(Pyi+T12)+C1(Pg1)-1000
Roy=-prT12-C{Pgr-T12)+Co(P)-100T,

Ry, R, is expanded as follows:

Ry= prT12-6(Pgi+T12)-0.22(Py 1+ T15)2+6P 1 +0.22 Py 5-1000
= prT12-6T12-0.22(199+T1,)*+0.22(199)*-1000
= prT1,-81.56 T,,-0.22 T;,%-1000 (10)

Ry= -prT12-Co(Pgr-T12)+Co(Py2) 1007,
= e+ T19-0.42(94- Tp)*+0.42:942-100T),
=-p1T1»-20.04T1,-0.42T,° (11)

L=max(prT1,-81.56T,-0.22T;,>-1000)(-p1T1,-20.04T,-
0.42T1,)
=max(1000p1T1,+61.52p1T1,°-0.20p:T -
preT122+2054.46T,° +38.67T,,°+0.0924T),%)

To maximize L, we use
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L 2
oL 10007;, +61.527;; —0.207;} -2 p,T;; = 0

op;

oL ) ; .
—— =1000T,, +61.56T"> —0.20T —2p:T,, +20.04

12

+4108827, +11601T; +0.36967 =0.

Eq. (9) is a non-linear problem with a non-linear objec-
tive and constraints, and multi-extreme points exist in the
optimization problem. These results are shown in Table 3.

Table 3 Results of Nash bargaining game

Gen Marginal price Savings
(MW] [$/MWh] [($/h]
Before | Gl 209 41.14 -
Trans. | G2 94 98.03 -
After | Gl 233 81.33 377.98
Trans. | G2 70 81.33 377.98
Transaction Power Tz 34.00 [MW]
Price 62.33[$/MWh]
Payment 2109.10[$]

5. Conclusions

This paper presents a sequential application of the non-
cooperative and cooperative game theories in analyzing the
process of power transaction in a competitive generation
market. We first introduced a competitive generation pool
model to determine the Nash equilibrium and secondly ap-
plied the Nash bargaining solution to the results of the non-
cooperative game to reflect the impact of transmission cost.
This resulting model is expected to reduce the dead-weight.
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loss of social welfare (which means the lost part of social
welfare due to non-optimal distribution of entire social re-
source) in deregulated markets in which the resources are
allocated not by system-wide economic dispatch but by
dispatch offers and market participants’ dispatch bids. For
more general applicability, this study will be extended to
the market model for » players including n generators, n
purchasers, and a transmission operator.
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