• Title/Summary/Keyword: Barbalat's lemma

Search Result 6, Processing Time 0.026 seconds

L1 Adaptive Controller Augmented with Feedback Linearization (피드백 선형화를 이용한 L1 적응제어기법 연구)

  • Kim, Nak-Wan;Yoo, Chang-Sun;Kang, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.558-564
    • /
    • 2008
  • This paper presents an approach to combine adaptive controller with feedback linearization, which extends the applicability of the adaptive controller to a wider class of systems. The adaptive controller guarantees the asymptotic tracking convergence and the transient performance of the tracking error. The feedback linearization transforms a nonlinear plant into a linear time invariant form. The asymptotic tracking convergence is shown by the use of Lyapunov stability analysis and Barbalat's lemma.

Asymptotic Behaviro of Adaptive Systems: Convergence Analysis Without the Barbalat's Lemma

  • Hong, Keum-Shik;Hong, Yong-do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.277-282
    • /
    • 1994
  • Convergence of the state error e to zero in adaptive systems is shown using the uniqueness of solutions and the existence of a Lyapunov function in which the adaptation laws are constructed. Results in the paper are general, and therefore applicable to any adaptive control of a linear/nonlinear, time-varying or distributed-parameter system. Since the approach taken in the paper does not require the boundedness of the derivative of the state error e for all t .geq. 0, it is particularly useful in the adaptive control of infinite dimensional systems.

  • PDF

A V-Shaped Lyapunov Function Approach to Model-Based Control of Flexible-Joint Robots

  • Lee, Ho-Hoon;Park, Seung-Gap
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1225-1231
    • /
    • 2000
  • This paper proposes a V-shaped Lyapunov function approach for the model-based control of flexible-joint robots, in which a new model-based nonlinear control scheme is designed based on a V-shaped Lyapunov function. The proposed control guarantees global asymptotic stability for link trajectory control while keeping all internal signals bounded. Since joint flexibility is used as a control parameter, the proposed control is not restricted by the degree of joint flexibility and be applied to flexibility-joint, partly-flexibility, or rigid-joint robots without modification. the effectiveness of the proposed control has been by computer simulation.

  • PDF

Adaptive Control of Flexible-Link Robots (유연마디 로봇의 적응제어)

  • Lee, Ho-Hun;Kim, Hyeon-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1689-1696
    • /
    • 2000
  • This paper proposes a new adaptive control scheme for flexible-link robots. A model-based nonlinear control scheme is designed based on a V-shape Lyapunov function, and then the nonlinear control i s extended to a model-based adaptive control to cope with parametric uncertainties in the dynamic model. The proposed control guarantees the global exponential or global asymptotic stability of the overall control system with all internal signals bounded. The effectiveness of the proposed control is shown by computer simulation.

COLLECTIVE BEHAVIORS OF SECOND-ORDER NONLINEAR CONSENSUS MODELS WITH A BONDING FORCE

  • Hyunjin Ahn;Junhyeok Byeon;Seung-Yeal Ha;Jaeyoung Yoon
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.565-602
    • /
    • 2024
  • We study the collective behaviors of two second-order nonlinear consensus models with a bonding force, namely the Kuramoto model and the Cucker-Smale model with inter-particle bonding force. The proposed models contain feedback control terms which induce collision avoidance and emergent consensus dynamics in a suitable framework. Through the cooperative interplays between feedback controls, initial state configuration tends to an ordered configuration asymptotically under suitable frameworks which are formulated in terms of system parameters and initial configurations. For a two-particle system on the real line, we show that the relative state tends to the preassigned value asymptotically, and we also provide several numerical examples to analyze the possible nonlinear dynamics of the proposed models, and compare them with analytical results.

Trajectory tracking control of underactuated USV based on modified backstepping approach

  • Dong, Zaopeng;Wan, Lei;Li, Yueming;Liu, Tao;Zhang, Guocheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.817-832
    • /
    • 2015
  • This paper presents a state feedback based backstepping control algorithm to address the trajectory tracking problem of an underactuated Unmanned Surface Vessel (USV) in the horizontal plane. A nonlinear three Degree of Freedom (DOF) underactuated dynamic model for USV is considered, and trajectory tracking controller that can track both curve trajectory and straight line trajectory with high accuracy is designed as the well known Persistent Exciting (PE) conditions of yaw velocity is completely relaxed in our study. The proposed controller has further been enriched by incorporating an integral action additionally for enhancing the steady state performance and control precision of the USV trajectory tracking control system. Global stability of the overall system is proved by Lyapunov theory and Barbalat's Lemma, and then simulation experiments are carried out to demonstrate the effectiveness of the controller designed.