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COLLECTIVE BEHAVIORS OF SECOND-ORDER

NONLINEAR CONSENSUS MODELS WITH

A BONDING FORCE

Hyunjin Ahn, Junhyeok Byeon, Seung-Yeal Ha, and Jaeyoung Yoon

Abstract. We study the collective behaviors of two second-order nonlin-
ear consensus models with a bonding force, namely the Kuramoto model

and the Cucker-Smale model with inter-particle bonding force. The pro-

posed models contain feedback control terms which induce collision avoid-
ance and emergent consensus dynamics in a suitable framework. Through

the cooperative interplays between feedback controls, initial state config-
uration tends to an ordered configuration asymptotically under suitable

frameworks which are formulated in terms of system parameters and ini-

tial configurations. For a two-particle system on the real line, we show
that the relative state tends to the preassigned value asymptotically, and

we also provide several numerical examples to analyze the possible nonlin-

ear dynamics of the proposed models, and compare them with analytical
results.

1. Introduction

Collective behaviors of many-body systems are ubiquitous in nature, to name
a few, aggregation of bacteria [48], flocking of birds [16,47,50], synchronization
of pacemaker cells and fireflies [1,5–8,14,35,41,42,46,51] and swarming of fish
[17–19], etc. Among them, we are mainly interested in two collective behaviors
“synchronization” and “flocking”. Synchronization denotes an adjustment of
rhythms of weakly coupled limit-cycle oscillators, whereas flocking represents
a collective behavior in which particles move with a common velocity by using
limited environmental information and simple rules. These collective behaviors
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were extensively studied via the particle models, the “Kuramoto model” and
the “Cucker-Smale model” in literature. Moreover, for one-dimensional case the
aforementioned models can be integrated into the common first-order nonlinear
consensus model with different coupling functions (see [26,30,32]). In this work,
we are interested in the second-order nonlinear consensus models incorporating
bonding control. To set up the stage, we first begin with a brief description on
the aforementioned models one by one.

Consider a finite ensemble of weakly coupled Kuramoto oscillators whose
states are represented by the real-valued “phase function”. In fact, Kuramoto
oscillators can be visualized as rotators moving around the unit circle S1. Let
θi = θi(t) and ωi = ωi(t) be the phase and frequency (phase velocity) of the i-
th Kuramoto oscillator, respectively. Then, the second-order Kuramoto model
[30] reads as: for any t > 0 and i ∈ [N ] := {1, . . . , N},

(1)


θ̇i = ωi,

ω̇i =
κ0
N

N∑
j=1

cos(θj − θi)(ωj − ωi),

where κ0 is a nonnegative coupling strength. For the special set of constrained
initial data, the system (1) is equivalent to the first-order Kuramoto model (see
Proposition 2.1):

(2) θ̇i = νi +
κ0
N

N∑
j=1

sin(θj − θi), t > 0, i ∈ [N ].

The emergent dynamics of the second-order model (1) has been studied in [30]
only for a restricted class of initial data, whereas the emergent dynamics of the
first-order model (2) has been extensively studied from diverse perspectives,
e.g., complete synchronization [7, 12, 14, 20, 28], critical coupling strength [21],
uniform mean field limit [25, 36], gradient flow formulation [49], discretized
model [33,44], kinetic Kuramoto model [5, 6, 9], etc.

Next, we consider a finite ensemble of Cucker-Smale flocking particles whose
mechanical states are given by position and velocity. More precisely, let xi

and vi be the position and velocity of the i-th Cucker-Smale particle in Rd.
Then, the Cucker-Smale (in short CS) model [16] is governed by the following
dynamical system:

(3)


ẋi = vi, t > 0, i ∈ [N ],

v̇i =
κ0
N

N∑
j=1

ψ(∥xj − xi∥)(vj − vi),

where ∥ · ∥ is the standard ℓ2-norm in Rd. Similar to the first-order Kuramoto
model (2), the CS model (3) was also extensively studied from diverse perspec-
tives in a half century. We refer to [3, 10, 11, 13, 31, 34, 39, 45] and references
therein. In this paper, we address the following simple questions:
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• (QA): Can we design a bonding force for (1) and (3) which makes
ensemble form organized spatial patterns?

• (QB): If so, under what conditions on system parameters and initial
configurations, do the Kuramoto and CS ensembles with inter-particle
bonding force exhibit collective self-organized behaviors?

For the CS model (3), the primitive version of the above questions was already
discussed in [40] for a restricted setting, but we further generalize the model in
[40] by varying parameters which measure asymptotic inter-particle distances.
We also refer to [37, 38, 43] for the related questions on pattern formation. In
contrast, for the second-order Kuramoto model (1), the above questions were
not addressed in previous literature. Thus, the purpose of this paper is to study
the above two questions in depth.

The main results of this paper are in three parts. First, we propose the
second-order Kuramoto model with a bonding force:

(4)



θ̇i = ωi, t > 0, i ∈ [N ],

ω̇i =
1

N

N∑
j=1

[
κ0 cos(θj − θi) + κ1

]
(ωj − ωi)

+
κ2
N

N∑
j=1

[
|θj − θi| − θ∞ij

]
sgn(θj − θi),

where κ1 and κ2 are nonnegative constants representing the intensities of bond-
ing interactions and θ∞ij denotes the desirable asymptotic phase spacing between
the i-th and the j-th oscillators. Here, we assume that the entries of the matrix
[θ∞ij ] satisfy

(5) θ∞ii = 0, i ∈ [N ], θ∞ij = θ∞ji , 1 ≤ i ̸= j ≤ N.

Note that the R.H.S. of (4) can be discontinuous at the instant in which θj = θi,
i.e., when the oscillators collide, forcing terms become discontinuous. Thus, we
may regard (4) as the system of differential inclusions and use the Filippov
theory [22, 23] for a global well-posedness of a generalized solution. However,
in this work, we mainly stay in the realm of classical smooth solutions whose
existence is guaranteed by the standard Cauchy-Lipschitz theory. In this case,
whether a finite-time collision occurs or not is a crucial issue which is directly
related with the well-posedness. Our first result yields that finite-time collision
can be avoided under a suitable framework for initial configurations and system
parameters such as coupling strengths and [θ∞ij ]:

(6) inf
0≤t<∞

min
1≤i ̸=j≤N

|θj(t)−θi(t)| > 0, κ0 min
i ̸=j

(
sup
t≥0

cos |θj(t)−θi(t)|
)
+κ1 > 0.

For the detailed description of framework, we refer to Theorem 3.2. Once the
nonexistence of finite-time collisions is guaranteed, then complete synchroniza-
tion can be directly followed from energy estimate (see Proposition 2.3). For a
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configuration {(θi, ωi)}, we define an energy functional E :

(7) E(t) := 1

2

N∑
i=1

|ωi(t)|2 +
κ2
4N

N∑
i,j=1

(
|θj(t)− θi(t)| − θ∞ij

)2
.

Then, it follows from time-evolution estimate for E that∫ ∞

0

N∑
i,j=1

|ωj(t)− ωi(t)|2dt ≲ NE(0).

Finally, we use Barbalat’s lemma to derive complete synchronization (see The-
orem 3.8):

lim
t→∞

max
1≤i,j≤N

|θ̇j(t)− θ̇i(t)| = 0.

Second, we propose the following Cucker-Smale model with a bonding force:

(8)



ẋi = vi, t > 0, i ∈ [N ],

v̇i =
κ0
N

N∑
j=1

ψ(∥xj−xi∥) (vj−vi)+
κ1
N

N∑
j=1
j ̸=i

〈
vj − vi,

xj−xi

∥xj−xi∥

〉 (xj−xi)

∥xj−xi∥

+
κ2
N

N∑
j=1
j ̸=i

(∥xj−xi∥−d∞ij )
(xj−xi)

∥xj−xi∥
,

where κ1 and κ2 are nonnegative constants controlling the intensities of CS in-
teractions and ⟨·, ·⟩ is the standard inner product in Rd. The system parameter
matrix D∞ = [d∞ij ] is assumed to satisfy the symmetry conditions (5), and the
communication weight function ψ : R+ → R+ is nonnegative, bounded, locally
Lipschitz continuous and strictly positive in some neighborhood of 0:

(9) 0 ≤ ψ(r) ≤ ψM , r ≥ 0, ψm := min
r∈[0,U ]

ψ(r) > 0,

where U is defined in (45). The case d∞ij = 2R in (8) was treated in [40]. Hence
our proposed model (8) is slightly different from the model proposed in [40]
(the distinction between two models will be discussed in Remark 4.2).

Since the R.H.S. of (8) contains ∥xj−xi∥ in denominators, it can be singular
at the instant in which xi = xj . Therefore, as in (4), finite-time collision
avoidance will be a crucial matter for the global well-posedness of classical
solutions. For this, parallel to (7), we can define an energy functional E:

(10) E :=

N∑
i=1

∥vi∥2

2
+

κ2
4N

N∑
i,j=1

(
∥xj − xi∥ − d∞ij

)2
.

In fact, under the formal correspondence:

(θi, ωi) ⇐⇒ (xi,vi),
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the energy functionals defined in (7) and (10) take the same form. Now, we
return to the collision avoidance issue for (8). Suppose that initial data and
system parameters satisfy

min
1≤i,j≤N

∥x0
i − x0

j∥ > 0, E(0) <
κ2
N

(
min

1≤i,j≤N
d∞ij

)2
.

Then, particles do not collide in any finite-time interval and relative distances
are uniformly bounded (Theorem 4.1):

0 < min
1≤i ̸=j≤N

inf
0≤t<∞

∥xi(t)− xj(t)∥ ≤ max
1≤i ̸=j≤N

sup
0≤t<∞

∥xi(t)− xj(t)∥ <∞.

On the other hand, under suitable conditions on ψ in (8), initial data and sys-
tem parameters, the mono-cluster flocking emerges asymptotically (see Theo-
rem 4.5):

sup
0≤t<∞

max
1≤i,j≤N

∥xi(t)− xj(t)∥ <∞, lim
t→∞

max
1≤i,j≤N

∥vj(t)− vi(t)∥ = 0.

Third, we provide a global existence of Filippov solution for (8) with N = 2 on
the real line with the desired convergence estimate:

lim
t→∞

|x1(t)− x2(t)| = d∞12.

See Section 4.3 for details.
The rest of this paper is organized as follows. In Section 2, we study sev-

eral basic estimates for the systems (4) and (8). In Section 3, we present
estimates on finite-time collision avoidance and asymptotic synchronization for
the second-order Kuramoto model with a bonding control. In Section 4, we
provide similar estimates on the finite-time collision avoidance and asymptotic
flocking estimate for the Cucker-Smale model with a bonding control. Further-
more, for the two-particle system on the real line, we show that spatial relative
distance tends to the desired relative distance asymptotically. In Section 5, we
provide several numerical examples for the proposed models and compare them
with analytical results in previous sections. Finally, Section 6 is devoted to a
brief summary of main results and some remaining issues for a future work. In
Appendices A and B in [2], we provide heuristic derivations for the bonding
feedback controls in the Cucker-Smale and the Kuramoto models, respectively.

Notation: We denote Θ, W , X and V by the set of state or state vector,
respectively, i.e.,

Θ := {θi} or (θ1, . . . , θN ), W := {ωi} or (ω1, . . . , ωN ),

X := {xi} or (x1, . . . ,xN ), V := {vi} or (v1, . . . ,vN ).
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For i, j ∈ [N ], we also set

rij := xi − xj , rij := ∥rij∥,
N∑
i ̸=j

:=

N∑
i=1

N∑
j=1
i ̸=j

, max
i,j

:= max
i,j∈[N ]

,

min
i,j

:= min
i,j∈[N ]

, max
i ̸=j

:= max
i,j∈[N ],i̸=j

, min
i ̸=j

:= min
i,j∈[N ],i̸=j

.

2. Preliminaries

In this section, we study a relation between the second-order Kuramoto
model and the first-order Kuramoto model, basic a priori estimates on the
conservation law and energy estimate. We also discuss parallel issues for the
Cucker-Smale model with a bonding control.

2.1. The second-order Kuramoto model

First, we study the relation between the Cauchy problems to (1) and (2) in
the following proposition.

Proposition 2.1. Suppose that {(θi, ωi)} is a global smooth solution to (2)

with the initial data {(θ0i , ω0
i )}. Then {(θi, ωi = θ̇i)} is a global smooth solution

to (1) with the constrained initial data {(θ0i , ω0
i )}:

ω0
i := νi +

κ0
N

N∑
j=1

sin(θ0j − θ0i ), i ∈ [N ].

Conversely, let {(θi, ωi)} be a global smooth solution to (1) with the constrained
initial data {(θ0i , ω0

i )}:

ω0
i = νi +

κ0
N

N∑
j=1

sin(θ0j − θ0i ), i ∈ [N ].

Then, {θi} is a solution of (2) with the initial data {θ0i }.

Proof. Note that (1)1 can be obtained by differentiating (2)1 with respect to t.
The rest of arguments can be followed in a straightforward manner. □

Next, we study a translation invariance and conserved quantities associated
with (4).

Lemma 2.2. Let {(θi, ωi)} be a global smooth solution to (4). Then the fol-
lowing assertions hold.

(i) System (4) is Galilean invariant, i.e., it is invariant under the Galilean
transformation:

(θi, ωi) 7→ (θi + αt, ωi + α) for α ∈ R, i ∈ [N ].
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(ii) The total sum of frequencies is preserved:

N∑
i=1

ωi(t) =

N∑
i=1

ω0
i , t > 0.

Proof. (i) For some α ∈ R, we set

θ̃i := θi + αt, ω̃i := ωi + α.

Then, it is easy to see

(11)
˙̃
θi =

d

dt

(
θi + αt

)
= θ̇i + α = ωi + α = ω̃i.

On the other hand, the R.H.S. of (4)2 is expressed in terms of θj − θi and
ωj − ωi. Thus, one has

˙̃ωi =
κ0
N

N∑
j=1

cos(θ̃j − θ̃i)(ω̃j − ω̃i)

+
κ1
N

N∑
j=1

(ω̃j − ω̃i) +
κ2
N

N∑
j=1

(|θ̃j − θ̃i| − θ∞ij )sgn(θ̃j − θ̃i).

(12)

Finally, we combine (11) and (12) to derive the first assertion.
(ii) The R.H.S. of (4) is skew-symmetric with respect to index exchange

(i, j) ↔ (j, i). Thus, the total sum
∑

i ωi satisfies

d

dt

N∑
i=1

ω(t) = 0, t > 0.

This yields the desired estimate. □

Now, we introduce energy functionals associated with (4). For a given con-
figuration {(θi, ωi)}, we set

E := Ek + Ep, Ek :=
1

2

N∑
i=1

|ωi|2,

Ep :=
κ2
4N

N∑
i,j=1

(
|θj − θi| − θ∞ij

)2
=

κ2
2N

∑
1≤i<j≤N

(
|θj − θi| − θ∞ij

)2
,

(13)

where Ek, Ep and E denote the kinetic energy, the potential energy and the
total energy, respectively.

Proposition 2.3 (Energy estimate). For τ ∈ (0,∞], let {(θi, ωi)} be a smooth
solution to (4) on t ∈ [0, τ). Then, the total energy E satisfies

(14) E(t) +
∫ t

0

P(s)ds = E(0) for t ∈ [0, τ),
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where the production rate functional P(t) is given as follows:

P(t) :=
1

2N

N∑
i,j=1

(
κ0 cos(θj − θi) + κ1

)
|ωj − ωi|2.

Proof. We multiply ωi to (4)2 to obtain

d

dt

|ωi|2

2
=
κ0
N

N∑
j=1

cos(θj − θi)(ωj − ωi)ωi

+
κ1
N

N∑
j=1

(ωj − ωi)ωi +
κ2
N

N∑
j=1

(|θj − θi| − θ∞ij )sgn(θj − θi)ωi.

(15)

Then, we sum up (15) over all i ∈ [N ], and then use the index interchange trick
i↔ j to obtain

dEk
dt

=
d

dt

(
1

2

N∑
i=1

|ωi|2
)

= − κ0
2N

N∑
i,j=1

cos(θj − θi)|ωj − ωi|2 −
κ1
2N

N∑
i,j=1

|ωj − ωi|2

− κ2
2N

N∑
i,j=1

(|θj − θi| − θ∞ij )sgn(θj − θi)(ωj − ωi)

=: − 1

2N

N∑
i,j=1

(
κ0 cos(θj − θi) + κ1

)
|ωj − ωi|2 + I1.

(16)

Now, we estimate the term I1 as follows. Since

|θj − θi| = sgn(θj − θi)(θj − θi),

one has

sgn(θj − θi)(ωj − ωi) = sgn(θj − θi)(θ̇j − θ̇i) =
d

dt
|θj − θi|.

In fact, the last relation can be made rigorously by approximating sgn(·) by
its smooth approximation. We omit its details here. Thus, the term I1 can be
estimated as follows.

I1 = − κ2
2N

N∑
i,j=1

(|θj − θi| − θ∞ij )
d

dt
|θj − θi|

= − κ2
4N

d

dt

( N∑
i,j=1

(|θj − θi| − θ∞ij )
2
)
= −dEp

dt
.

(17)

Finally, we combine (16) and (17) to get the desired energy estimate. □
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2.2. The Cucker-Smale model

As in Proposition 2.3, we study the basic structure of (8). First, we begin
with the invariance and conservation of total momentum to (8).

Lemma 2.4. Let {(xi,vi)} be a solution to (8). Then the following assertions
hold.

(i) The system (8) is Galilean invariant, i.e., it is invariant under the
Galilean transformation:

(xi,vi) 7→ (xi + ct,vi + c) for c ∈ Rd, t ≥ 0, i ∈ [N ].

(ii) The total sum of velocities is conserved:

N∑
i=1

vi(t) =

N∑
i=1

v0
i , t ≥ 0.

Proof. We set

ṽi := vi + c, x̃i := xi + ct.

Then, one has

(18) ˙̃x = ẋi + c = vi + c = ṽi, i ∈ [N ].

On the other hand, note that

xj − xi = x̃j − x̃i, vj − vi = ṽj − ṽi, i, j ∈ [N ],

and the R.H.S. of (8) is expressed in terms of relative differences xj − xi and
vj − vi, and

˙̃vi =
κ0
N

N∑
j=1

ψ(r̃ij) (ṽj − ṽi)

+
κ1
N

N∑
j ̸=i

⟨ṽj−ṽi, x̃j−x̃i⟩
r̃2ij

(x̃j−x̃i) +
κ2
N

N∑
j ̸=i

(r̃ij−d∞ij )
r̃ij

(x̃j−x̃i),

(19)

where we defined r̃ij := ∥x̃i− x̃j∥. We combine (18) and (19) to get the desired
estimate. □

As in Section 2.1, we introduce energy functionals for (8) as follows.

E := Ek + Ep, Ek :=
1

2

N∑
i=1

∥vi∥2,

Ep :=
κ2
4N

N∑
i,j=1

(∥xj − xi∥ − d∞ij )
2 =

κ2
2N

∑
1≤i<j≤N

(∥xj − xi∥ − d∞ij )
2,

(20)

where Ek, Ep and E correspond to kinetic energy, potential energy and total
energy, respectively.
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Proposition 2.5 (Energy estimate). For τ ∈ (0,∞], let {(xi,vi)}Ni=1 be a
solution to (8) on t ∈ [0, τ). Then, the total energy E satisfies

E(t) +

∫ t

0

P (s)ds = E(0) for t ∈ [0, τ),

where P is the total energy production functional given by

P :=
κ0
2N

N∑
i,j=1

ψ(∥xj − xi∥)∥vj − vi∥2 +
κ1
2N

N∑
i ̸=j

〈
vj − vi,

rji
rji

〉2
, t ∈ (0, τ).

Proof. Below, we estimate the time-derivatives of Ek and Ep one by one.
• Case A (Time-derivative of Ek): We use (8)2 and an index interchange trick
i↔ j to obtain

dEk

dt
=

N∑
i=1

⟨vi, v̇i⟩

=
κ0
N

N∑
i,j=1

ψ(rji)
〈
vj − vi,vi

〉
+
κ1
N

N∑
i̸=j

1

r2ji
⟨vj − vi, rji⟩⟨rji,vi⟩

+
κ2
N

N∑
i ̸=j

rji − d∞ij
rji

⟨rji,vi⟩

= − κ0
2N

N∑
i,j=1

ψ(rji)∥vj − vi∥2 −
κ1
2N

N∑
i,j=1

1

r2ji
⟨vj − vi, rji⟩2

− κ2
2N

N∑
i ̸=j

rji − d∞ij
rji

⟨rji,vj − vi⟩.

(21)

• Case B (Time-derivative of Ep): We use (8)2 and (20) to have

(22)
dEp

dt
=

κ2
2N

N∑
i ̸=j

(rij − d∞ij )
drij
dt

=
κ2
2N

N∑
i ̸=j

rji − d∞ji
rji

⟨rji,vj − vi⟩.

Finally, we combine (22) and (21) to induce

dE

dt
= − κ0

2N

N∑
i,j=1

ψ(rji)∥vj − vi∥2 −
κ1
2N

N∑
i ̸=j

〈
vj − vi,

rji
rji

〉2
= −P.

This leads to the desired estimate. □

3. The second-order Kuramoto model with a bonding force

In this section, we provide a sufficient framework which leads to the nonex-
istence of finite-time collision to (4), and then we derive the complete synchro-
nization using energy estimate in Proposition 2.3.
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Note that the forcing terms in (4) can be decomposed as the sum of syn-
chronizing force and bonding force:

1

N

N∑
j=1

[
κ0 cos(θj − θi) + κ1

]
(ωj − ωi) +

κ2
N

N∑
j=1

[
|θj − θi| − θ∞ij

]
sgn(θj − θi)

=
κ0
N

N∑
j=1

cos(θj − θi)(ωj − ωi)︸ ︷︷ ︸
synchronizing force

+
κ1
N

N∑
j=1

(ωj − ωi) +
κ2
N

N∑
j=1

(|θj − θi| − θ∞ij )sgn(θj − θi)︸ ︷︷ ︸
bonding force

.
(23)

As mentioned in Introduction, the term sgn(θj − θi) in the R.H.S. of (23) is
discontinuous at the instant when θi = θj . Thus, as long as there are no finite-
time collisions, the R.H.S of (1)1 is still Lipschitz continuous and sublinear
with respect to state variable. Therefore, a global well-posedness of classical
solutions can be made in a classical framework based on the Cauchy-Lipschitz
theory. In what follows, we are interested in the following two issues:

• Issue A.1 (Nonexistence of finite-time collisions): We provide a sufficient
framework leading to the nonexistence of finite-time collisions, in terms
of initial data and system parameters.

• Issue A.2 (Emergence of complete synchronization): We present a suffi-
cient framework leading to complete synchronization which represents
zero convergence of relative frequencies.

3.1. Nonexistence of finite-time collisions

In this subsection, we study a framework leading to the nonexistence of
finite-time collisions. For this, we set real numbers U , L and a set S:

U := max
i̸=j

θ∞ij +

√
2NE(0)
κ2

, L := min
i ̸=j

θ∞ij −

√
2NE(0)
κ2

,

S := {(Θ,W ) ∈ R2N : |θi − θj | < U < π}.

(24)

Note that U and L in (24) depend only on system parameters and initial data.
First, we show that the set S is positively invariant along the dynamics (4).

Lemma 3.1 (Positively invariant set). Suppose that initial data and system
parameters satisfy

(25) (Θ0,W 0) ∈ S, κ0 cosU + κ1 > 0, κ2 > 0,

and for some τ ∈ (0,∞], let {(θi, ωi)} be a solution to (4) in the time-interval
[0, τ). Then, one has

(Θ(t),W (t)) ∈ S, ∀ t ∈ [0, τ).
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Proof. The positive invariance of S will be verified by the continuous induction
and dissipation estimate for E in Proposition 2.3. It follows from (14) that

dE
dt

= − κ0
2N

N∑
i,j=1

cos(θj − θi)|θ̇j − θ̇i|2 −
κ1
2N

N∑
i,j=1

|θ̇j − θ̇i|2

= − 1

2N

N∑
i,j=1

[
κ0 cos |θj − θi|+ κ1

]
|θ̇j − θ̇i|2 ≤ 0.

(26)

Suppose that Θ0 lies in the set S:
(27) |θ0i − θ0j | < U < π.

Now, we consider a subset T of [0, τ):

T := {0 < T < τ : Θ(t) ∈ S, t ∈ [0, T )}.
By the continuity of Θ = Θ(t) and (27), there exists δ > 0 such that

Θ(t) ∈ S, t ∈ [0, δ).

Thus, δ ∈ T , i.e., it is nonempty. Now, we define the supremum of the set T
by T ∗:

T ∗ := sup T .
Then, one has for t ∈ [0, T ∗),

(28) |θj(t)− θi(t)| < U < π and κ0 cos |θj − θi|+ κ1 ≥ κ0 cosU + κ1 > 0.

Now, we claim:
T ∗ = τ.

Proof of claim. Suppose not, i.e., T ∗ < τ . Then, there exist two indices
i∗, j∗ ∈ [N ] such that

(29) |θj∗(T ∗)− θi∗(T
∗)| = U .

To derive a contradiction, since dE
dt ≤ 0, we consider the following two cases:

either
dE
dt

= 0 for all t ∈ [0, T ∗) or ∃ T ∈ [0, T ∗) such that
dE
dt

∣∣∣
t=T

< 0.

Below, we consider the following two cases.
• Case A: Suppose that

dE(t)
dt

≡ 0, ∀ t ∈ [0, T ∗).

Then, it follows from (26) and (28)2 that

θ̇i(t) = θ̇j(t), ∀ i, j ∈ [N ] and ∀ t ∈ [0, T ∗).

In this case, one obtains

|θ̇j∗(t)− θ̇i∗(t)| = 0 for all t ∈ [0, T ∗).

This implies
|θj∗(T ∗)− θi∗(T

∗)| = |θ0j∗ − θ0i∗ | < U ,
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which gives a contradiction to (29).
• Case B: Suppose there exists T ∈ [0, T ∗) such that

dE
dt

∣∣∣
t=T

< 0.

Since dE
dt

∣∣∣
t=T

< 0, one has

E(T ∗) < E(0).
On the other hand, it follows from (13) that

Ep(T ∗) =
κ2
4N

N∑
i,j=1

(|θj(T ∗)− θi(T
∗)| − θ∞ij )

2

=
κ2
2N

∑
1≤i<j≤N

(|θj(T ∗)− θi(T
∗)| − θ∞ij )

2 ≤ E(T ∗) < E(0).

Thus, we have

κ2
2N

(|θj(T ∗)− θi(T
∗)| − θ∞ij )

2 < E(0), i ̸= j.

Therefore, we have

L ≤ θ∞ij −

√
2NE(0)
κ2

≤ |θj(T ∗)− θi(T
∗)| < θ∞ij +

√
2NE(0)
κ2

≤ U .

Again, this gives a contradiction to (29), and one has T ∗ = τ . Thus, we get
the desired result. □

Now we are ready to provide our first main result regarding to the nonexis-
tence of finite-time collisions.

Theorem 3.2 (Nonexistence of finite-time collisions). Suppose that initial data
and system parameters satisfy

(Θ0,W 0) ∈ S, E(0) <
κ2(mini̸=j θ

∞
ij )

2

2N
, κ0 cosU + κ1 > 0, κ2 > 0,(30)

and for τ ∈ (0,∞], let {θi}Ni=1 be a smooth solution to (4) in the time-interval
[0, τ). Then, there is no collision between each pair of all inter-particles along
(4) in the time-interval [0, τ ].

Proof. Recall the potential energy:

(31) Ep(t) :=
κ2
2N

∑
1≤i<j≤N

(
|θi(t)− θj(t)| − θ∞ij

)2
.

Suppose there exists a collision between the pair (i∗, j∗) with i∗ ̸= j∗ at time
t = τ−:

θi∗(τ−) = θj∗(τ−).
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Then, it follows from (13) that

(32)

Ep(τ−) ≥ κ2
2N

(
|θi∗(τ−)− θj∗(τ−)| − θ∞i∗j∗

)2
=
κ2(θ

∞
i∗j∗

)2

2N

≥
κ2(mini ̸=j θ

∞
ij )

2

2N
.

Now, we use Proposition 2.3 and (30) to find

(33) E(t) ≤ E(0) <
κ2(mini ̸=j θ

∞
ij )

2

2N
, t ∈ [0, τ).

Finally, we combine (32) and (33) to find

κ2(mini ̸=j θ
∞
ij )

2

2N
≤ Ep(τ−) ≤ E(τ−) ≤ E(0) <

κ2(mini ̸=j θ
∞
ij )

2

2N
,

which is contradictory. Hence, we obtain the desired result. □

Remark 3.3. (i) By combining Theorem 3.2 and continuous induction argu-
ment, one can show that under the framework (30), finite-time collisions will
not occur and then, we have a global existence of solution to (4). On the other
hand, note that (30)2 is equivalent to

min
i̸=j

θ∞ij −

√
2NE(0)
κ2

> 0.

Hence, one has the strict positivity of L in (24).
(ii) Note that in (25) and (30), we required that the initial phase configura-

tion {θ0i } satisfy implicit relations:

(34) |θ0i − θ0j | < U < π and E(0) <
κ2(mini ̸=j θ

∞
ij )

2

2N
.

Now we use the explicit representations for E(0) and U :

E(0) = 1

2

N∑
i=1

|ωi|2+
κ2
2N

∑
1≤i<j≤N

(
|θ0j −θ0i |−θ∞ij

)2
, U = max

i ̸=j
θ∞ij +

√
2NE(0)
κ2

,

to make (34) to be explicit:

⋄ (The condition (34)1): We use E(0) ≥ κ2

2N

∑
1≤i<j≤N

(
|θ0j −θ0i |−θ∞ij

)2
to find

0 < π − U = π −
[
max
i ̸=j

θ∞ij +

√
2NE(0)
κ2

]
≤ π −max

i ̸=j
θ∞ij −

√ ∑
1≤i<j≤N

(
|θ0j − θ0i | − θ∞ij

)2
.
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This implies

(35)
(
π −max

i ̸=j
θ∞ij
)2 ≥

∑
1≤i<j≤N

(
|θ0j − θ0i | − θ∞ij

)2
.

(The condition (34)2): Note that

0 <
κ2 mini,j(θ

∞
ij )

2

2N
− E(0) < κ2

2N

(
min
i ̸=j

(θ∞ij )
2 −

∑
1≤i<j≤N

(
|θ0j − θ0i | − θ∞ij

)2)
.

This implies

(36) min
i ̸=j

(θ∞ij )
2 ≥

∑
1≤i<j≤N

(
|θ0j − θ0i | − θ∞ij

)2
.

Finally, we combine (35) and (36) to obtain

(37)
N∑

1≤i<j≤N

(
|θ0j − θ0i | − θ∞ij

)2 ≤ min
{
min
i ̸=j

(θ∞ij )
2, (π −max

i ̸=j
θ∞ij )

2
}
.

As a direct corollary of Theorem 3.2, we have a uniform positive lower bound
for |θi − θj |.

Corollary 3.4. Suppose that initial data and coupling strengths satisfy (30),
and let {θi} be a global smooth solution to (4). Then, one has

inf
0≤t<∞

min
i ̸=j

|θj(t)− θi(t)| ≥ L > 0.

Proof. Since |θj−θi|−θ∞ij is invariant under the index exchange transformation
(i, j) ↔ (j, i), the potential energy satisfies

Ep =
κ2
2N

∑
1≤i<j≤N

(
|θj − θi| − θ∞ij

)2
.

Now, we use the above relation and Proposition 2.3 to have the following rela-
tion:

E(0) ≥ E(t) ≥ Ep(t) ≥
κ2
2N

(
|θj(t)− θi(t)| − θ∞ij

)2
for i ̸= j. This and the definition of L yield

L = min
k ̸=l

θ∞kl −

√
2NE(0)
κ2

≤ θ∞ij −

√
2NE(0)
κ2

≤ |θj(t)− θi(t)| for t ∈ (0,∞).

This implies the desired estimate. □
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3.2. Complete synchronization

In this subsection, we present complete synchronization to (4) by using Bar-
balat’s lemma and energy estimate in Proposition 2.3. First, we recall various
concepts for synchronization.

Definition 3.5. Let Θ = {θi} be a time-dependent phase ensemble.

(i) Θ = Θ(t) is a phase-locked state if all relative phase differences are
constant:

|θi(t)− θj(t)| = |θ0i − θ0j |, ∀ t ≥ 0, ∀ i, j ∈ [N ].

(ii) Θ = Θ(t) exhibits (asymptotic) complete phase-locking if the relative
phase differences converge as t→ ∞:

∃ lim
t→∞

(θi(t)− θj(t)), ∀ i, j ∈ [N ].

(iii) Θ = Θ(t) exhibits complete synchronization if the relative frequency
differences converge to zero as t→ ∞:

lim
t→∞

max
i,j

|θ̇i(t)− θ̇j(t)| = 0.

Now, we recall the Barbalat lemma in [4] to be used in Theorem 3.8 and
Theorem 4.5.

Lemma 3.6 (Barbalat’s lemma, [4]). Let f : (0,∞) → R be a uniformly
continuous function such that ∫ ∞

0

f(t)dt <∞.

Then, one has

lim
t→∞

f(t) = 0.

Lemma 3.7. Suppose that initial data and system parameters satisfy (30), and
let {θi} be a global smooth solution to (4). Then, for i ̸= j, one has∥∥∥ d

dt
|ωj(t)− ωi(t)|2

∥∥∥
L∞(R+)

<∞.

Thus, the map t 7→
∑

i,j |wj(t)− wi(t)|2 is uniformly continuous.

Proof. Note that ωi and ωj satisfy

ω̇i =
1

N

N∑
k=1

[
κ0 cos(θk − θi) + κ1

]
(ωk − ωi) +

κ2
N

N∑
k=1

[
|θk − θi| − θ∞ik

]
sgn(θk − θi),

ω̇j =
1

N

N∑
k=1

[
κ0 cos(θk − θj) + κ1

]
(ωk − ωj) +

κ2
N

N∑
k=1

[
|θk − θj | − θ∞jk

]
sgn(θk − θj).
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These and the Cauchy-Schwarz inequality imply∣∣∣ d
dt

|ωj(t)− ωi(t)|2
∣∣∣

=
∣∣∣(ω̇j − ω̇i) · (ωj − ωi)

∣∣∣
≤ (κ0 + κ1)

N

N∑
k=1

(
|ωk − ωj |+ |ωk − ωi|

)
· |ωj − ωi|

+
κ2|ωj − ωi|

N

(
N∑

k=1

∣∣∣|θk − θj | − θ∞jk

∣∣∣+ N∑
k=1

∣∣∣|θk − θi| − θ∞ik

∣∣∣) .
(38)

Due to Lemma 3.1, we have

sup
0≤t<∞

|θi(t)− θj(t)| ≤ U < π.

This yields

κ0 cos(θj − θi) + κ1 ≥ κ0 cosU + κ1 > 0.

Since the energy production rate P is nonnegative, Proposition 2.3 leads to

E(t) = Ek(t) + Ep(t) ≤ E(0), ∀ t ≥ 0.

With the nonnegativity of Ek and Ep, the uniform boundedness of them can be
obtained:

(39) sup
0≤t≤∞

1

2

N∑
i=1

|wi(t)|2 <∞, sup
0≤t≤∞

κ2
4N

N∑
i,j=1

(
|θj(t)−θi(t)|−θ∞ij

)2
<∞.

Finally, we combine (38) and (39) to get the desired estimate. □

Now, we present the proof of complete synchronization of (4).

Theorem 3.8 (Complete synchronization). Suppose that initial data and cou-
pling strengths satisfy (30) together, and let {θi} be a global smooth solution to
(4). Then, the following assertions hold.

(i) Complete synchronization emerges asymptotically:

lim
t→∞

max
i,j

|θ̇j(t)− θ̇i(t)| = 0.

(ii) If
∑N

i=1 ω
0
i = 0, then we have

lim
t→∞

max
1≤i≤N

|ωi(t)| = 0.

Proof. (i) It follows from Proposition 2.3 that∫ ∞

0

N∑
i,j=1

|ωj(t)− ωi(t)|2dt ≤
2NE(0)

κ0 cosU + κ1
<∞
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for i, j ∈ [N ]. We apply Lemma 3.7 to show that the map t 7→
∑

i,j |ωj(t) −
ωi(t)|2 is uniformly continuous. Thus, we can employ Lemma 3.6 to prove the
desired estimate:

(40) lim
t→∞

N∑
i,j=1

|ωj(t)− ωi(t)|2 = 0.

(ii) We use Lemma 2.2 to get

N∑
i=1

ωi(t) =

N∑
i=1

ω0
i = 0, t ≥ 0.

This implies

(41)

N∑
i,j=1

|ωi − ωj |2 = 2N

N∑
i=1

|ωi|2 − 2
∣∣∣ N∑
i=1

ωi

∣∣∣2 = 2N

N∑
i=1

|ωi|2.

Consequently, we combine (40) and (41) to obtain the desired estimate. □

As a direct application of Theorem 3.8, we can infer asymptotic behaviors
of kinetic, potential and total energies.

Corollary 3.9. Suppose that initial data and coupling strengths satisfy (30)

and
∑N

i=1 ω
0
i = 0, and let {(θi, ωi)} be a global smooth solution to (4). Then,

there exists a nonnegative constant E∞ such that

lim
t→∞

Ek(t) = 0, lim
t→∞

Ep(t) = E∞, lim
t→∞

E(t) = E∞.

Proof. (i) It follows from the second assertion in Theorem 3.8 that

lim
t→∞

|ωi(t)| = 0 for all i ∈ [N ].

Thus, the total kinetic energy tends to zero asymptotically:

(42) lim
t→∞

Ek(t) =
1

2

N∑
i=1

lim
t→∞

|ωi(t)|2 = 0.

(ii) It follows from (30) and Proposition 2.3 that a nonnegative energy E is
nonincreasing in time t. Thus, there exists E∞ ∈ [0, E(0)) such that

(43) lim
t→∞

E(t) = E∞.

Finally, we combine (42) and (43), and use E = Ek + Ep to see

lim
t→∞

Ep(t) = E∞.
□
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4. The Cucker-Smale model with a bonding force

In this section, we study the nonexistence of finite-time collisions and emer-
gent dynamics of the Cucker-Smale model with a bonding control. Thanks to
Lemma 2.4, without loss of generality, we may assume

N∑
i=1

vi(t) = 0, t ≥ 0.

4.1. Nonexistence of finite-time collisions

Recall that

rij := xi − xj , rij := ∥rij∥, i, j ∈ [N ],

and consider velocity dynamics in (8):

v̇i =
κ0
N

N∑
j=1

ψ(rij) (vj − vi) +
κ1
N

N∑
j=1

⟨vj − vi, rji⟩
r2ij

rji +
κ2
N

N∑
j=1

rij − d∞ij
rij

rji.

(44)

Note that rij appears in the denominator in the R.H.S. of (44) and the conti-

nuity of
rji

rji
(i ̸= j) breaks down when rji = 0, i.e., at the instant when two

particles collide. Therefore, we have to make sure that rij > 0 in any finite-
time interval to get the global existence of classical solutions in the framework
of the Cauchy-Lipschitz theory. Similar to (24), we set

U := max
i ̸=j

d∞ij +

√
2NE(0)

κ2
, L := min

i ̸=j
d∞ij −

√
2NE(0)

κ2
,

S :=
{
(X,V ) ∈ R2dN : max

i ̸=j
∥xi − xj∥ ≤ U

}
.

(45)

Note that L and U are slightly different from L and U in (24).

Theorem 4.1 (Nonexistence of finite-time collisions). Suppose initial data and
system parameters satisfy

min
i̸=j

∥x0
i − x0

j∥ > 0, min
i ̸=j

d∞ij >

√
2NE(0)

κ2
,

(X0, V 0) ∈ S, κ0 > 0, κ1 > 0, κ2 > 0,

(46)

and for τ ∈ (0,∞], let {(xi,vi)}Ni=1 be a smooth solution to (8)–(9) in the
time-interval [0, τ). Then we have

(47) 0 < L ≤ ∥xi(t)− xj(t)∥ ≤ U, ∀ t ∈ [0, τ),

for i, j ∈ [N ]. In particular, this implies the nonexistence of finite-time colli-
sions.
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Proof. We use Proposition 2.5 to bound the potential energy by

Ep(t) ≤ Ek(t) +
κ2
2N

∑
1≤i<j≤N

(∥xi(t)− xj(t)∥ − d∞ij )
2 ≤ E(0).(48)

For i, j ∈ [N ], we use (48) to find

κ2
2N

(∥xi(t)− xj(t)∥ − d∞ij )
2 ≤ κ2

2N

∑
1≤i<j≤N

(
∥xi(t)− xj(t)∥ − d∞ij

)2
≤ E(0).

This results in ∣∣∣∥xi(t)− xj(t)∥ − d∞ij

∣∣∣ ≤
√

2NE(0)

κ2
,

or equivalently,

d∞ij −

√
2NE(0)

κ2
≤ ∥xi(t)− xj(t)∥ ≤ d∞ij +

√
2NE(0)

κ2
, i, j ∈ [N ].

This leads to

(49) L ≤ ∥xi(t)− xj(t)∥ ≤ U, t ∈ [0, τ), i, j ∈ [N ].

On the other hand, the condition (46)2 implies

(50) L > 0.

Finally, we combine (49) and (50) to derive (47). □

Remark 4.2. Although the overall approach in the current subsection is simi-
lar to that of [40], it turns out that the control of individual d∞ij leads to the
stability of the system, represented by Theorem 4.1. We recall that energy is
minimized if ∥xi − xj∥ ≈ d∞ij for each i, j, but this is fundamentally impos-
sible under the constraint of identical parameter d∞ij ≡ 2R (i ̸= j) unless the
number of particle is small. This is because there is no feasible configuration
to place N particles in a way that every N(N − 1)/2 distances are identical, in
physical space of small dimension. Hence, if d∞ij ≡ 2R as in [40], then although
the system will lead to state corresponding to the local minimizer of the en-
ergy functional, the potential energy Ep is forced to have certain lower bound,
reflecting the infeasibility of the configuration satisfying d∞ij ≡ 2R. To summa-
rize, the stability and the well-posedness of (8) is influenced by the feasibility
of the configuration parameter {d∞ij }, which is realized by Theorem 4.1.

4.2. Asymptotic flocking

In this subsection, we present the asymptotic flocking estimate of (8). For
this, we first recall the concept of asymptotic flocking as follows.

Definition 4.3. Let Z = {(xi,vi)} be a global smooth solution to (8)–(9). The
configuration Z exhibits (asymptotic) flocking if the following two conditions
hold.
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(i) (Spatial cohesion): The relative distances are uniformly bounded in
time:

sup
0≤t<∞

max
i,j

∥xi(t)− xj(t)∥ <∞.

(ii) (Asymptotic velocity alignment): The relative velocities tend to zero
asymptotically:

lim
t→∞

max
i,j

∥vj(t)− vi(t)∥ = 0.

First, we begin with the following elementary lemma.

Lemma 4.4. Let {(xi,vi)} be a global smooth solution to (8)–(9). Then, one
has ∥∥∥∥ ddt∥vi(t)− vj(t)∥2

∥∥∥∥
L∞(R+)

<∞ for i, j ∈ [N ].

In particular, the map t 7→ ∥vi − vj∥2 is uniformly continuous.

Proof. We use the same arguments in Lemma 3.7. Note that

∣∣∣(v̇j − v̇i) · (vj − vi)
∣∣∣

≤
[
κ0ψM

N

N∑
k=1

(
∥vk − vj∥+ ∥vk − vi∥

)
+
κ1
N

N∑
k=1

(
∥vk − vj∥+ ∥vk − vi∥

)

+
κ2
N

N∑
k=1

(∣∣∣rkj − d∞kj

∣∣∣+ ∣∣∣rki − d∞ki

∣∣∣)]∥vj − vi∥

≤
[
κ0ψM

N

N∑
k=1

(
∥vk − vj∥+ ∥vk − vi∥

)
+
κ1
N

N∑
k=1

(
∥vk − vj∥+ ∥vk − vi∥

)]
∥vj − vi∥

+
κ2
N

( N∑
k=1

∣∣∣rkj − d∞kj

∣∣∣2)1/2

+

(
N∑

k=1

∣∣∣rki − d∞ki

∣∣∣2)1/2
( N∑

k=1

∥vj − vi∥2
)1/2

,

(51)

where ψM is a finite upper bound of ψ. Due to Proposition 2.5, we can get
uniform boundedness of Ek and Ep:

sup
0≤t<∞

N∑
k=1

∥vk∥2 <∞ and sup
0≤t<∞

(
∥xj − xi∥ − d∞ij

)2
<∞.(52)

Consequently, we combine (51) with (52) to obtain the desired estimate. □

Now, we present our fourth main result on the emergence of asymptotic
flocking.

Theorem 4.5 (Global flocking). Suppose that initial data, system parameters
and communication weight function satisfy (46), and let {(xi,vi)} be a global
smooth solution to (8). Then, the following assertions hold.
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(i) Asymptotic flocking occurs:

sup
0≤t<∞

max
i,j

∥xi(t)− xj(t)∥ <∞, lim
t→∞

max
i,j

∥vj(t)− vi(t)∥ = 0.

(ii) If initial total momentum is zero, that is,
∑N

i=1 v
0
i = 0, then we have

lim
t→∞

max
1≤i≤N

∥vi(t)∥ = 0.

Proof. (i) Since initial data and system parameters satisfy the same conditions
(46) as in Theorem 4.1, the spatial cohesion can be followed from (47):

(53) sup
0≤t<∞

max
i,j

∥xi(t)− xj(t)∥ ≤ U.

For the velocity alignment, we use Proposition 2.5 to obtain

dE

dt
≤ − κ0

2N

N∑
i,j=1

ψ(rji)∥vj − vi∥2 ≤ −κ0ψm

2N

N∑
i,j=1

∥vj − vi∥2.

Then, one can show that∫ ∞

0

N∑
i=1

∥vj(t)− vi(t)∥2dt ≤
2NE(0)

κ0ψm
<∞.

Thanks to Lemma 4.4, the mapping t 7→
∑N

i=1 ∥vj(t) − vi(t)∥2 is uniformly
continuous. Thus, we use Barbalat’s lemma to get

(54) lim
t→∞

N∑
i,j=1

∥vi(t)− vj(t)∥2 = 0.

This yields the desired velocity alignment. Accordingly, we combine (53) and
(54) to get the desired flocking estimates.

(ii) Suppose initial total momentum
∑N

i=1 v
0
i is zero. Then, by Lemma 2.4,

one has
N∑
i=1

vi(t) = 0, ∀ t > 0.

This leads to

N∑
i,j=1

∥vi(t)− vj(t)∥2 = 2N

N∑
i=1

∥vi(t)∥2 − 2
∣∣∣ N∑
i=1

vi(t)
∣∣∣2 = 2N

N∑
i=1

∥vi(t)∥2.

Letting t→ ∞, we use (54) and the above relation to find

lim
t→∞

N∑
i=1

∥vi(t)∥2 = 0.

□
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Remark 4.6. By the conservation of momentum and velocity alignment esti-
mate, one can see that the velocities tend to the average initial momentum
asymptotically:

vi(t) →
1

N

N∑
i=1

v0
i as t→ ∞ for all i ∈ [N ].

4.3. Convergence property of two-particle system

In this subsection, we study the convergence of relative distances for the
Cauchy problem to the two-particle system on the real line:

(55)



ẋ1 = v1, ẋ2 = v2, t > 0,

v̇1 =
κ0
2
ψ(|x2 − x1|) (v2 − v1) +

κ1
2
(v2 − v1)

(
x2 − x1
|x2 − x1|

)2

+
κ2
2
(|x2 − x1| − d∞12)

x2 − x1
|x2 − x1|

,

v̇2 =
κ0
2
ψ(|x1 − x2|) (v1 − v2) +

κ1
2
(v1 − v2)

(
x1 − x2
|x1 − x2|

)2

+
κ2
2
(|x1 − x2| − d∞12)

x1 − x2
|x1 − x2|

,

(x1, v1)(0) = (x01, v
0
1), (x2, v2)(0) = (x02, v

0
2).

So far, we focused on the collision avoidance so that we can use the Cauchy-
Lipchitz theory to guarantee well-posedness under some sufficient framework
in terms of system parameters and initial data. However, collisions between
particles can occur some situations. In this situation, the R.H.S. of (55) be-
comes discontinuous at the position x1 = x2. Thus, we reinterpret (55) as the
system of differential inclusion and use the Filippov theory to construct on
absolutely continuous solution to (55). In what follows, we will show that this
Filippov solution exhibits the convergence property of relative distance |x2−x1|
as t→ ∞. First, we set

ψ ≡ 1, x(t) := x1(t)− x2(t), v(t) := v1(t)− v2(t), d∞ := d∞12.

Then, it follows from (55) that (x, v) satisfies

(56)


ẋ = v, t > 0,

v̇ = −κ0
(
x

|x|

)2

v − κ1

(
x

|x|

)2

v − κ2(|x| − d∞)
x

|x|
,

(x, v)(0) = (x0, v0).

Equivalently, (56) can be rewritten as

(57) ẍ =

{
−(κ0 + κ1)ẋ− κ2x+ κ2d

∞ if x > 0,

−(κ0 + κ1)ẋ− κ2x− κ2d
∞ if x < 0.
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Once we have (x, v), we use the balance laws:

v1(t) + v2(t) = v01 + v02 , x1(t) + x2(t) = x01 + x02 + (v01 + v02)t, t ≥ 0,

then we can determine (x1, v1) and (x2, v2). Since the set {(x, v) | x = 0} is of
measure zero in (x, v)-space, Definition 4.7 allows us to construct an absolutely
continuous solution to (56).

4.3.1. A short summary of Filippov’s theory. In this part, we present a brief
summary of Filippov’s generalized solutions to a differential equation on Eu-
clidean space Rn with discontinuous right-hand side. First, we begin with
several basic definitions.

Definition 4.7 (Filippov solution [24]). Consider a system of differential equa-
tions for z = z(t) ∈ Rn:

(58) ż(t) = Z(z(t)), t > 0,

where a vector field Z : Rn → Rn is possibly discontinuous.

(i) Let P(Rn) be the power set of Rn. Then the Filippov set-valued map
F [Z] : Rn → P(Rn) is defined by

F [Z](z) :=
⋂
δ>0

⋂
|S|=0

co{Z(Bδ(z)− S)},

where co is a closed convex hull and | · | is the Lebesgue measure on
Rn.

(ii) z = z(t) is a Filippov solution to the Cauchy problem (58) on [0, T ] ∈
R if z is absolutely continuous and satisfies the following differential
inclusion for almost every t ∈ [0, T ]:

ż(t) ∈ F [Z](z(t)).

Roughly speaking, since x itself can be excised while constructing a convex
hull, the Filippov solution can be understood as a generalized solution that
refers to the vector field at neighborhood only. Therefore, we may expect that
behavior at a discontinuous point can be treated from its neighborhood as far
as nearby behavior is consistent, which we clarify in the following proposition.

Definition 4.8. A vector field Z : Rn → Rn is piecewise continuous if there
exists a finite collection of disjoint, open, and connected sets D1, . . . ,Dm ⊂ Rn

such that

(i)
⋃m

k=1 Dk = Rn, and Z is continuous on each Dk.
(ii) restriction of Z to each Dk admits a continuous extension to the closure

Dk, which is denoted by Z
∣∣∣
Dk

.

Proposition 4.9 ([15,24]). Let Z : Rn → Rn be a piecewise continuous vector
field covered by D1 and D2. Let SZ := ∂D1 = ∂D2 be the set of points at which
Z is discontinuous. Suppose that
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(i) SZ is a C2-manifold.

(ii) For i = 1, 2, Z
∣∣∣
Di

is continuously differentiable on Di and Z
∣∣∣
D1

−Z
∣∣∣
D2

is continuously differentiable on SZ .

(iii) For each z ∈ SZ , either Z
∣∣∣
D1

points into D2 or Z
∣∣∣
D2

points into D1.

Then, ż(t) = Z(z(t)) has a unique Filippov solution starting from each initial
data.

4.3.2. A Filippov solution with convergence property. In this part, we con-
struct a unique Filippov solution to (56) with the following convergence prop-
erty:

lim
t→∞

|x1(t)− x2(t)| = d∞.

Now we return to (56). From Definition 4.7, it is straightforward to construct
a Filippov solution (x, v).

Below, we sketch the construction procedure of a Filippov solution as follows.
First, we define a local classical solution, which is well defined until the sign of
x changes. Let v be a velocity when sign of x alters. If v ̸= 0, then we shift
the dynamic and define a new local solution with initial datum (0, v). Then,
by repeating this procedure and concatenating the solutions so far, we obtain
a Filippov solution until it reaches 0 = (0, 0). Then the remaining issue is
uniqueness. We will use Proposition 4.9 to show that the Filippov solution
exists uniquely if and only if z(t) = (x(t), v(t)) ̸= 0 for any t ∈ R+. In what
follows, we briefly preview the argument. We set

D1 := {(x, v) | x < 0}, D2 := {(x, v) | x > 0}, SZ := {(0, v) | v ∈ R},

Z
∣∣∣
D1

: {(x, v) | x ≤ 0} → R2, (x, v) 7→ (v,−(κ0 + κ1)v − κ2x− κ2d
∞),

Z
∣∣∣
D2

: {(x, v) | x ≥ 0} → R2, (x, v) 7→ (v,−(κ0 + κ1)v − κ2x+ κ2d
∞).

Then we can see that assumptions in Proposition 4.9 are fulfilled except the

last one; both Z
∣∣∣
D1

and Z
∣∣∣
D2

are parallel to SZ at the origin. To resolve this

issue, we modify the vector field Z near the origin. More precisely, for ε > 0,
we consider a vector field Zε satisfying

Zε
|D1

: (x, v) 7→
(
v − sgn(x)× εφ(ε−1(x, v)),−(κ0 + κ1)v − κ2x− κ2d

∞),
Zε
|D2

: (x, v) 7→
(
v − sgn(x)× εφ(ε−1(x, v)),−(κ0 + κ1)v − κ2x+ κ2d

∞),(59)

where φ : R2 → R is a smooth bump function satisfying

φ ∈ C∞(R2), φ(0) = 1 and spt(φ) ⊂ B1(0).

Then Zε satisfies the assumptions on Proposition 4.9, and we will utilize Zε to
show that for any initial datum (x0, v0), we have the following dichotomy:

Either (x(t∗), v(t∗)) = (0, 0) for some finite t∗,
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or there exists a unique global Filippov solution satisfying lim
t→∞

|x(t)| = d∞.

Note that, if the former holds, then the Cauchy problem (56) is ill-posed, and
there are infinitely many Filippov solutions (see Theorem 4.11). For a Filippov
solution (x, v), we set T to be the first hitting at the origin:

(60) T := inf{t ∈ R+ | (x(t), v(t)) = 0}.

Lemma 4.10. Suppose that z0 = (x0, v0) ̸= 0 is an initial datum. Then
T ∈ (0,∞] defined in (60) is well defined, and the Cauchy problem (56) has a
unique Filippov solution z = z(t) on [0, T ).

Proof. Consider the Cauchy problem to the modified system:

(61)

{
żε(t) = Zε(zε(t)), t > 0,

zε(0) = z0.

Then, by Proposition 4.9, the ODE system ż(t) = Zε(z(t)) has a unique Filip-
pov solution zε. We take a sufficiently small ε satisfying

0 < ε < |z0|,

and let Tε be the first time hitting the Bε(0):

T ε := inf
{
t ∈ R+ | |zε(t)| = ε

}
.

Then, since Z and Zε coincide on R2 − Bε(0, 0), ż(t) = Z(z(t)) inherits this
solution on [0, T ε] and this is a unique solution, because otherwise it contradicts
the uniqueness of zε. As Tε is a decreasing function of ε, we can define its limit

T := lim
ε↘0

T ϵ, T ∈ (0,∞].

Note that, for ε1 > ε2, Z
ε1 and Zε2 coincide on R2 −Bε1(0) and we have

zε1(t) = zε2(t), t ∈ [0, T ε1 ].

Thus we may regard zε2([0, T ε2 ]) as an extension of zε1([0, T ε1 ]), and a solution
z(t) of (56) exists uniquely on [0, T ) = ∪ϵ[0, T

ε]. Now for all 0 < ε ≪ 1, we
have

inf
t∈[0,T )

dist(z(t),0) < inf
t∈[0,T ε]

dist(z(t),0) = ε.

On the other hand, for any t∗ ∈ [0, T ), there exists 0 < δ such that t∗ < T δ < T
and therefore

inf
t∈[0,t∗)

dist(z(t),0) ≥ δ > 0.

We combine the results altogether to get

lim
t↗T

dist(z(t),0) = inf
t∈[0,T )

dist(z(t),0) = 0.

Therefore T is the first hitting time of the origin. □
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Note that the concatenation of smooth solution mentioned above is in fact
a unique Filippov solution. Now, we are ready to show that desired distance
will be achieved asymptotically despite collisions.

Theorem 4.11. Let 0 ̸= (x0, v0) ∈ R2 be a given initial data of (56). Then
the following assertions hold.

(i) System (56) admits a unique global Filippov solution (x, v) if and only
if (x(t), v(t)) ̸= 0 for any t ∈ R+. Otherwise, there are infinitely many
Filippov solutions.

(ii) If (x(t), v(t)) ̸= 0 for any t ∈ R+, then limt→∞ |x(t)| = d∞.

Proof. (i) Depending on the coupling strengths, we consider two cases:

either (κ0 + κ1)
2 ≥ κ2 or (κ0 + κ1)

2 < κ2.

• Case 1: Assume that

(κ0 + κ1)
2 ≥ κ2.

If x0 ̸= 0, then the global solution is of the form

x = k1 exp

(
−1

2
t ((κ0 + κ1) +K)

)
+ k2 exp

(
−1

2
t ((κ0 + κ1)−K)

)
+ d∞12sgn(x

0),

(62)

where k1, k2 are determined from the initial data and K :=
√

(κ0 + κ1)2 − 4κ2.
Therefore, |x − sgn(x0)d∞| decreases in time and |x(t)| is always positive. If
x0 = 0, we replace sgn(x0) by sgn(v0) in (62) and apply the same argument to
see that |x− sgn(v0)d∞| is decreasing and |x(t)| is positive for all t > 0.

• Case 2: Assume that

(κ0 + κ1)
2 < κ2.

Suppose that (x(t̃), v(t̃)) = 0. We may set t̃ = 0, and we define functions f±

as

f±(x) := ∓ e−
1
2 t(κ0+κ1)d∞ sec

[
arctan

(
− κ0 + κ1√

κ2 − (κ0 + κ1)2

)]
× cos

[
ωt+ arctan

(
− κ0 + κ1√

κ2 − (κ0 + κ1)2

)]
± d∞.

(63)

Then for each τ ≥ 0,

f±τ (x) :=

{
0 if x ≤ τ,

f±(x− τ) if x > τ,

are solutions of (56) on [0, τ + ετ ] for some ετ > 0. The remaining part is a
direct consequence of Lemma 4.10.

(ii) We split its proof into two steps.
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• Step A (Finite number of collisions implies convergence): Suppose there exists
only a finite number of collisions. If x(t∗) = 0 for some finite T , we have

v(t∗) ̸= 0.

Consider a sequence of collision times (tn):

(x(tn), v(tn)) = (0, v(tn)) ̸= (0, 0), t1 < t2 < t3 < · · · .

Suppose that collision happens only finite times, and let tN be the last collision
time. Then since tN is the last collision time, x(t) satisfies

ẍ(t) = −(κ0 + κ1)ẋ(t)− κ2x(t) + κ2sgn(v(tN ))d∞, |x(t)| > 0, ∀t > tN .(64)

Equation (64)1 represents a damped harmonic oscillator and it is well known
that

|x(t)− d∞(t)|

≲

{
exp

[
− 1

2 t
(
(κ0 + κ1)−

√
(κ0 + κ1)2 − 4κ2

)]
if (κ0 + κ1)

2 ≥ 4κ2,

exp
[
− 1

2 t(κ0 + κ1)
]

if (κ0 + κ1)
2 < 4κ2,

for t ≥ tN . Therefore if collisions occur finitely many times, we have a desired
convergence.
• Step B (The number of collisions is finite): We prove that the number of
collisions is finite. Suppose on the contrary that the collisions happen infinitely
many times. Now, we claim that there exists δ > 0 such that for all n,

(65) tn+1 − tn > δ.

If not, for all ε > 0, there exists m such that

tm+1 − tm < ε.

From Lemma 4.10, the Filippov solution is the continuous concatenation of
solutions of either (57)1 or (57)2. From the dynamics of a damped harmonic
oscillator, whether (x((tm, tm+1)), v((tm, tm+1))) is in D1 or D2, we have

|x(tm + ε∗)| = d∞ for some 0 < ε∗ < ε.

Then, since x is differentiable in each time interval (tm, tm+1), the mean value
theorem implies

d∞ = |x(tm + ε∗)− x(tm)| = ε∗ × |v(t∗m)| < ε× |v(t∗m)|, t∗m ∈ (tm, tm + ε∗).

Above, ε can be taken arbitrarily small. This implies that v can be arbitrary
large:

for all 0 < ε, there exists t∗m ∈ R+ such that
d∞

ε
< |v(t∗m)|.(66)

On the other hand, since the continuity of solution yields

lim
t↘tn

E(t) = lim
t↗tn

E(t)
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and energy dissipates in each time interval, kinetic energy is bounded by E(0),
and so v is bounded; this is contradictory to (66), and the claim is proved.

Note that total energy is decreasing and continuous on R+, and possibility
of non-differentiability occurs only at each tn. Thus E admits a weak derivative
and there exists

∃ lim
t→∞

E(t) =: E∞.

Therefore, we have

E∞ − E(t1) = lim
n→∞

E(tn)− E(t1) = − lim
n→∞

κ0 + κ1
2

∫ tn

t1

v2(t)dt,

where we used the result of claim for the first equality, and Proposition 2.5 for
the second equality. Since energy dissipation bounds both x and v on R+ and
non-differentiability occurs only at each tn, which is of measure zero, the result
of Lemma 4.4 is still valid. As continuity of v2 is guaranteed from Lemma 4.10,
v2 is uniformly continuous on R+. Hence we can apply Barbalat’s lemma to
derive v → 0. This implies Ek → 0, and therefore

κ2
4
(|x(t)| − d∞)2 = Ep → E∞.(67)

On the other hand, there exists t∗n ∈ (tn, tn+1) satisfying

|x(t∗n)| = d∞, x(tn) = 0, n ∈ N, lim
n→∞

tn = lim
n→∞

t∗n = ∞.

This contradicts to (67) and the number of collisions is finite. □

5. Numerical simulations

In this section, we provide several numerical simulations for the second-
order models in previous sections, and compare them with analytical results.
Moreover, we also present several numerical simulations in relation with the
convergence of relative distances toward the desired relative distances.

5.1. Kuramoto ensemble

In this subsection, we present several numerical simulations for the Ku-
ramoto model with the bonding force (KMBF) (4) and compare them with
those of the original Kuramoto (KM) (1) and the version with no Kuramoto
term. We also check the consistency with the analytic results in Section 3 with
simulation results. For all simulations, we choose N = 10 and use the 4th-
order Runge-Kutta scheme. Initial data and system parameters are designed
to satisfy the sufficient condition (30) for complete synchronization in Section
3. Throughout this subsection, we set

∆t = 10−2, t ∈ [0, 5], νi = 0, ∀ i ∈ [10].



594 H. AHN, J. BYEON, S.-Y. HA, AND J. YOON

Recall the forcing terms in (4):

κ0
10

10∑
j=1

cos(θj − θi)(ωj − ωi)︸ ︷︷ ︸
synchronizing force

+
κ1
20

10∑
j=1

(θ̇j − θ̇i) +
κ2
20

10∑
j=1

(|θj − θi| − θ∞ij )sgn(θj − θi)︸ ︷︷ ︸
bonding force

.

Let Θ0 and Θ∗ be the initial and target phase configurations:

{θ0i }10i=1 = {0.1979, 0.2580, 0.2601, 0.4231, 0.4635,
0.5011, 0.5947, 0.8710, 0.9262, 0.9722},

θ∗i =


3.5(i− 1)◦ if 1 ≤ i ≤ 3,

12.5◦ + 4(i− 4)◦ if 4 ≤ i ≤ 7,

40◦ + 5(i− 8)◦ if 8 ≤ i ≤ 10.

Then, the matrix [θ∞ij ] is determined by the target configuration Θ∗ using the
following relations:

|θ∗i − θ∗j | = θ∞ij , i, j ∈ [10].

Lastly, {ωi} is determined to make zero momentum when (κ0, κ1, κ2)=(1, 5, 10).
In all simulations, we fix the initial configuration Θ0 and [θ∞ij ]. The first three
sets of figures are concerned with the second-order Kuramoto model.

In Figure 1, we compare the temporal evolution of phases and decay rates
in the complete synchronization process. In Figure 1(A), we can see that the
trajectories of KM converge to the common phase, whereas the trajectories of
KMBF tends to the preassigned target configuration Θ∗. Of course, the rigor-
ous justification for this convergence has not been verified. In Figure 1(B), we
can see that the decay rates for complete synchronization are at least exponen-
tial, and complete synchronization for KMBF seems to occur faster than that
of KM. This is due to the bonding control so that aggregated configuration
tends to the target configuration Θ∗ much faster than the original KM ensem-
ble. Note that the analytical result in Theorem 3.8 provide a zero convergence
of relative frequencies without any decay rate.

In Figure 2, we compare the trajectories of the KMBF with two sets of
coupling strengths to observe the impact of Kuramoto term:

(κ0, κ1, κ2) =

{
(1, 5, 10) Left figure,

(0, 5, 10) Right figure.

In both cases, phase trajectories tend to the target phase configuration Θ∗ as
time goes on. The synchronization force (κ0 > 0) can affect the trajectories in
initial layer, in this case it seems the Kuramoto term makes some attraction
force between particles at the beginning, but it does not affect to the resulting
target phase configuration. Of course, this obvious fact is not yet proved.

In Figure 3, we see the temporal evolutions of kinetic, potential and total
energies for Kuramoto ensemble in a bonding force field. As analytically shown
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Figure 1. Comparison of relaxation processes for KM and
KMBF
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Figure 2. Convergence to target configuration

in Proposition 2.3, total energy monotonically converges for well-prepared ini-
tial data and system parameters, but kinetic and potential energies decay to
zero without a monotonicity.

5.2. Cucker-Smale ensemble

In this subsection, we provide various numerical results for one and two
dimensional Cucker-Smale system with the bonding force (CSBF) (8). For all
simulations, we use N = 10 and the 4th-order Runge-Kutta scheme. Initial
data and system parameters are designed to satisfy the sufficient condition
(46) for a global flocking in Section 4. We also set

∆t = 10−2, t ∈ [0, 10], ψ(x) =
1

1 + ∥x∥
.(68)
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Figure 3. Temporal evolution of energies

Recall the forcing terms (8):

κ0
10

10∑
j=1

ψ(∥xi − xj∥) (vj − vi)

+
1

10

10∑
i ̸=j

[
κ1

⟨vj − vi,xj − xi⟩
∥xi − xj∥2

+ κ2
(∥xi − xj∥ − d∞ij )

∥xi − xj∥

]
(xj − xi).

We set initial configuration as:

Table 1. Initial configuration

(x0
1,v

0
1) (2.9415, 1.0133) (0.0100,−0.1275)

(x0
2,v

0
2) (−0.1868, 3.0893) (0.0874, 0.2318)

(x0
3,v

0
3) (−2.8378, 0.6900) (0.0192, 0.1613)

(x0
4,v

0
4) (−1.8895,−2.4844) (0.0450, 0.0151)

(x0
5,v

0
5) (1.9088,−2.3172) (0.0099,−0.0733)

(x0
6,v

0
6) (0.4133, 0.9212) (0.0301,−0.1290)

(x0
7,v

0
7) (−0.4425, 0.7271) (−0.1415,−0.1233)

(x0
8,v

0
8) (−0.8685,−0.5283) (−0.2134, 0.1876)

(x0
9,v

0
9) (−0.0589,−0.9098) (0.0256,−0.0149)

(x0
10,v

0
10) (1.0304,−0.2013) (0.1278,−0.1280)

Note that the initial data in the table are chosen to satisfy zero sum condi-
tions:

10∑
i=1

x0
i = 0, and

10∑
i=1

v0
i = 0.
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The matrix [d∞ij ] is determined by the relative distances among given 10 points

{si}10i=1 which are called the target configuration:

si =

{
3
2 (cos(18 + 72(i− 1))◦, sin(18 + 72(i− 1))◦) , if 1 ≤ i ≤ 5,
1
2 (cos(54 + 72(i− 1))◦, sin(54 + 72(i− 1))◦) , if 6 ≤ i ≤ 10.

In all the simulations, we fix the initial configuration (X0, V 0) and the matrix
[d∞ij ]. For the spatial pattern configuration, if [d∞ij ] is randomly given, the
existence of particles satisfying the distances [d∞ij ] is not guaranteed.

In Figure 4, we can see the temporal evolutions of kinetic, potential and
total energies for two different set of coupling strengths:

(κ0, κ1, κ2) : (1, 5, 10) and (0, 5, 10).

Note that in (A), the kinetic energy decays to zero asymptotically for a solution
with zero total momentum which is consistent with Theorem 4.5(ii). In addi-
tion, the potential energy also decrease to zero asymptotically and this means
that all particles maintain the expected distances. In (B), the story of poten-
tial energy is the same with that of (A). However, the kinetic energy converges
to nonzero implying that it does not exhibit asymptotic flocking. From this
numeric simulations, we can derive that the condition of strictly positive κ0 in
(45) is tightened.
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Figure 4. Temporal evolution of energies for d = 2

Finally, we consider the convergence of relative distances for the Cucker-
Smale system with bonding force (CSBF) on the line d = 1. In this situation,
the convergence of relative distances to the preassigned set [d∞ij ] can be observed
numerically.

In Figure 5, we focus on the rate of reduction of kinetic, potential and total
energies, respectively. We maintain numerical settings (68) and assume zero
total momentum as well. Likewise in the Kuramoto system with a bonding
force which is 1-dimensional system, 1-dimensional CSBF also exhibits precise
configuration of particles compared to expected distances. For simulations, we
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adopted (κ0, κ1, κ2) = (1, 1, 40) and the initial and target position configura-
tions as follows:

{x0i }10i=1 = { − 29.5926, −16.5471, −8.9365, −3.5433, −0.6838,

1.0488, 4.1392, 9.2734, 17.4788, 30.4824},
{x∗i }10i=1 = { − 30, −17, −9, −4, −1, 1, 4, 9, 17, 30}.

This simulation has the energy configuration as in Figure 5.
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(a) Temporal evolution of {xi}10i=1

0 1 2 3 4 5 6

time

0

1

2

3

4

5

6

Kinetic energy

Potential energy

Total energy

(b) Temporal evolution of energies
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(c) Decay rates of energies
(d) Decay of total energy for 100 sim-
ulations

Figure 5. Convergence of relative distances for d = 1

Note that the total energy monotonically decrease in (B) whereas kinetic
and potential decay to zero with infinite number of oscillations. To investigate
the flows of decreasing rate and oscillation amplitude, we measure them in a
logarithm scale as in (C). With this same context, we conducted 100 simulations
where each has only difference in initial data of position and velocity. The
simulation result (D) illustrates that the amplitude could be different depending
on initial data. However, the exponential decay rate seems to be the same
irrespective of initial data.



2ND-ORDER NONLINEAR CONSENSUS MODEL WITH A BONDING FORCE 599

6. Conclusion

In this paper, we have introduced the two second-order nonlinear consensus
models with an inter-particle bonding force, namely the “Kuramoto model with
a bonding force” and the “Cucker-Smale model with a bonding force”. These
proposed models contain singular terms in the bonding force which are singu-
lar at the instant in which some state variables coincide with. We simply call
these situations as collisions. Thus, if we work in a classical framework of well-
posedness given by the Cauchy-Lipschitz theory, we can show the nonexistence
of finite collisions and exhibit asymptotic consensus estimates under some con-
ditions on system parameters and initial data. In this direction, we provided
several explicit analytical frameworks for collision avoidance and collective dy-
namics of the proposed models. The proposed frameworks are formulated in
terms of system parameters and initial data. Of course, there any many inter-
esting issues that we did not touch in the current work. To name a few, we first
consider the convergence issue of relative states. When the coupling strengths
are sufficiently small so that the proposed models can be regarded as the per-
turbations of the corresponding linear flows, finite-time collisions can emerge.
In this case, we may work with a Filippov framework which is beyond the
scope of the current work. However, for a two-particle system on the real line,
we show that the relative states for Filippov solution tend to the preassigned
values even if finite-time collisions are present with the help of Filippov theory.
Thus, the generalization of this special case to a one-dimensional setting for a
many-body system will be an interesting open problem. The extension of cur-
rent work to the relativistic and manifold setting as in [27, 29] will be another
interesting direction for a future work.
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[29] S.-Y. Ha, D. Kim, and F. W. Schlöder, Emergent behaviors of Cucker-Smale flocks on

Riemannian manifolds, IEEE Trans. Automat. Control 66 (2021), no. 7, 3020–3035.
[30] S.-Y. Ha, C. Lattanzio, B. Rubino, and M. Slemrod, Flocking and synchronization of

particle models, Quart. Appl. Math. 69 (2011), no. 1, 91–103. https://doi.org/10.

1090/S0033-569X-2010-01200-7

[31] S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and

mean-field limit, Commun. Math. Sci. 7 (2009), no. 2, 297–325. http://projecteuclid.

org/euclid.cms/1243443982

[32] S.-Y. Ha, J. Park, and X. Zhang, A first-order reduction of the Cucker-Smale model

on the real line and its clustering dynamics, Commun. Math. Sci. 16 (2018), no. 7,
1907–1931. https://doi.org/10.4310/CMS.2018.v16.n7.a8

[33] S.-Y. Ha, W. Shim, and J. Yoon, An energy preserving discretization method for the

thermodynamic Kuramoto model and collective behaviors, Commun. Math. Sci. 20
(2022), no. 2, 495–521. https://doi.org/10.4310/CMS.2022.v20.n2.a9

[34] S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of

flocking, Kinet. Relat. Models 1 (2008), no. 3, 415–435. https://doi.org/10.3934/

krm.2008.1.415

[35] Y. Kuramoto, International symposium on mathematical problems in mathematical

physics, Lecture Notes Theor. Phys. 30 (1975), 420.
[36] C. Lancellotti, On the Vlasov limit for systems of nonlinearly coupled oscillators without

noise, Transport Theory Statist. Phys. 34 (2005), no. 7, 523–535. https://doi.org/10.

1080/00411450508951152

[37] Y. C. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with

processing delay, J. Math. Anal. Appl. 415 (2014), no. 1, 53–61. https://doi.org/10.

1016/j.jmaa.2014.01.036

[38] Y. C. Liu and J. Wu, Local phase synchronization and clustering for the delayed phase-

coupled oscillators with plastic coupling, J. Math. Anal. Appl. 444 (2016), no. 2, 947–
956. https://doi.org/10.1016/j.jmaa.2016.06.049

[39] S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev. 56

(2014), no. 4, 577–621. https://doi.org/10.1137/120901866
[40] J. Park, H. J. Kim, and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding

forces, IEEE Trans. Automat. Control 55 (2010), no. 11, 2617–2623. https://doi.org/

10.1109/TAC.2010.2061070

[41] C. S. Peskin, Mathematical aspects of heart physiology, Courant Inst. Math. Sci., New

York University, New York, 1975.

[42] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization, Cambridge Nonlinear Sci-
ence Series, 12, Cambridge Univ. Press, Cambridge, 2001. https://doi.org/10.1017/

CBO9780511755743

[43] L. Ru, Y. C. Liu, and X. Wang, New conditions to avoid collisions in the discrete
Cucker-Smale model with singular interactions, Appl. Math. Lett. 114 (2021), Paper

No. 106906, 6 pp. https://doi.org/10.1016/j.aml.2020.106906

https://doi.org/10.1007/s00205-018-1281-x
https://doi.org/10.1007/s00205-019-01452-y
https://doi.org/10.1007/s00205-019-01452-y
https://doi.org/10.4310/CMS.2016.v14.n4.a10
https://doi.org/10.1090/S0033-569X-2010-01200-7
https://doi.org/10.1090/S0033-569X-2010-01200-7
http://projecteuclid.org/euclid.cms/1243443982
http://projecteuclid.org/euclid.cms/1243443982
https://doi.org/10.4310/CMS.2018.v16.n7.a8
https://doi.org/10.4310/CMS.2022.v20.n2.a9
https://doi.org/10.3934/krm.2008.1.415
https://doi.org/10.3934/krm.2008.1.415
https://doi.org/10.1080/00411450508951152
https://doi.org/10.1080/00411450508951152
https://doi.org/10.1016/j.jmaa.2014.01.036
https://doi.org/10.1016/j.jmaa.2014.01.036
https://doi.org/10.1016/j.jmaa.2016.06.049
https://doi.org/10.1137/120901866
https://doi.org/10.1109/TAC.2010.2061070
https://doi.org/10.1109/TAC.2010.2061070
https://doi.org/10.1017/CBO9780511755743
https://doi.org/10.1017/CBO9780511755743
https://doi.org/10.1016/j.aml.2020.106906


602 H. AHN, J. BYEON, S.-Y. HA, AND J. YOON

[44] W. Shim, On the generic complete synchronization of the discrete Kuramoto model,

Kinet. Relat. Models 13 (2020), no. 5, 979–1005. https://doi.org/10.3934/krm.

2020034

[45] R. Shvydkoy, Dynamics and analysis of alignment models of collective behavior, Nečas
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