• Title/Summary/Keyword: Bar parameters

Search Result 558, Processing Time 0.025 seconds

SURFACE PHOTOMETRY OF BARRED GALAXIES: GLOBAL STRUCTURE OF BARRED GALAXIES

  • Ann, Hong-Sik;Lee, See-Woo
    • Journal of The Korean Astronomical Society
    • /
    • v.20 no.2
    • /
    • pp.49-62
    • /
    • 1987
  • Using the detailed two-dimensional surface photometry of 39 galaxies, the observed profiles are decomposed into spheroid, disk and bar components simultaneously. From the analyses of decomposition parameters, the correlations among the three components are investigated to find the global property of barred galaxies. And the lens and ring components, and spiral arm patterns are also examined with Hubble type and decomposition parameters.

  • PDF

Study of dynamic mechanical behavior of aluminum 7075-T6 with respect to diameters and L/D ratios using Split Hopkinson Pressure Bar (SHPB)

  • Kim, Eunhye;Changani, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.857-869
    • /
    • 2015
  • The aluminum 7075-T6 is known as an alloy widely used in aircraft structural applications, which does not exhibit strain rate sensitivity during dynamic compressive tests. Despite mechanical importance of the material, there is not enough attention to determine appropriate sample dimensions such as a sample diameter relative to the device bar diameter and sample length to diameter (L/D) ratio for dynamic tests and how these two parameters can change mechanical behaviors of the sample under dynamic loading condition. In this study, various samples which have different diameters of 31.8, 25.4, 15.9, and 9.5 mm and sample L/D ratios of 2.0, 1.5, 1.0, 0.5, and 0.25 were tested using Split Hopkinson Pressure Bar (SHPB), as this testing device is proper to characterize mechanical behaviors of solid materials at high strain rates. The mechanical behavior of this alloy was examined under ${\sim}200-5,500s^{-1}$ dynamic strain rate. Aluminum samples of 2.0, 1.5 and 1.0 of L/D ratios were well fitted into the stress-strain curve, Madison and Green's diagram, regardless of the sample diameters. Also, the 0.5 and 0.25 L/D ratio samples having the diameter of 31.8 and 25.4 mm followed the stress-strain curve. As results, larger samples (31.8 and 25.4 mm) in diameters followed the stress-strain curve regardless of the L/D ratios, whereas the 0.5 and 0.25 L/D ratios of small diameter sample (15.9 and 9.5 mm) did not follow the stress-strain diagram but significantly deviate from the diagram. Our results indicate that the L/D ratio is important determinant in stress-strain responses under the SHPB test when the sample diameter is small relative to the test bar diameter (31.8 mm), but when sample diameter is close to the bar diameter, L/D ratio does not significantly affect the stress-strain responses. This suggests that the areal mismatch (non-contact area of the testing bar) between the sample and the bar can misrepresent mechanical behaviors of the aluminum 7075-T6 at the dynamic loading condition.

On the Aquation of Dichloro Bis-(Ethylenediamine)-Chromium (III) Cation (Dichloro Bis-(Ethylenediamine)-Chromium (III) 양이온의 수화반응)

  • Jung-Ui Hwang;Jong-Jae Chung;Soung-Oh Bek
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.95-101
    • /
    • 1984
  • Aquation reaction kinetics of $[Cr(en)_2Cl_2]^+$complex was carried by the electric conductivity method. Its temperature range was $15^{\circ}C$ to $30^{\circ}C$ and pressure was varied up to 2,000 bars. The reaction rate was increased with increasing temperature, but was reversed to increasing pressure. The activation volume(${\Delta}V^{\neq}$) was increased with increasing temperature and decreased with increasing pressure. At $25^{\circ}C$ and 1 bar it was fairly small positive value, $1.82cm^2/mole$. Activation entropy change(${\Delta}S^{\neq}$) $was calculated as small negative value,-9.019 eu, at $25^{\circ}C$ and 1bar. Referring to the thermodynamic parameters, it was estimated that aquation reaction was proceeded by the interchange-dissociation(Id) mechanism.

  • PDF

Bond Strength of Reinforcing Steel to High-Performance Concrete Using Belite Cement (고성능 Belite 시멘트 콘크리트의 철근 부착성능)

  • Kim, Sang-Jun;Cho, Pil-Kyu;Hur, Jun;Choi, Oan-Chul
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.169-178
    • /
    • 1998
  • Bond strength of reinforcing bar to high-perfomance concrete using belite cement is explored using beam end test specimens. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete cover. The test results show that the specimens with belite cement concrete show approximately 10% higer bond strength than those with portland cement concrete. The results also show that the bond strength from the high strength concrete is function of the square root of concrete compressive strength. Bond strength of the top bar is less than bond strength of bottom bar, but the ratios of the bond strength of bottom-cast bars to those for top-cast bars are much less than the modification factor for top reinforcement found in the ACI 318-95 code. Comparisons with other reported tests identified that belite cement increased bond strength while silica fume or flyash used in high strength concrete decreased bond strength. The high-strength and high-slump concrete with belite cement performs well in terms of bond strength to reinforcing steel.

Static analysis of a radially retractable hybrid grid shell in the closed position

  • Cai, Jianguo;Jiang, Chao;Deng, Xiaowei;Feng, Jian;Xu, Yixiang
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1391-1404
    • /
    • 2015
  • A radially retractable roof structure based on the concept of the hybrid grid shell is proposed in this paper. The single-layer steel trusses of the radially foldable bar structure are diagonally stiffened by cables, which leads to a single-layer lattice shell with triangular mesh. Then comparison between the static behavior between the retractable hybrid grid shell and the corresponding foldable bar shell with quadrangular mesh is discussed. Moreover, the effects of different structural parameters, such as the rise-to-span ratio, the bar cross section area and the pre-stress of the cables, on the structural behaviors are investigated. The results show that prestressed cables can strengthen the foldable bar shell with quadrangular mesh. Higher structural stiffness is anticipated by introducing cables into the hybrid system. When the rise-span ratio is equal to 0.2, where the joint displacement reaches the minimal value, the structure shape of the hyrbid grid shell approaches the reasonable arch axis. The increase of the section of steel bars contributes a lot to the integrity stiffness of the structure. Increasing cable sections would enhance the structure stiffness, but it contributes little to axial forces in structural members. And the level of cable prestress has slight influence on the joint displacements and member forces.

Dependence of Barredness of Late-Type Galaxies on Galaxy Properties and Environment

  • Lee, Gwang-Ho;Park, Chang-Bom;Lee, Myung-Gyoon;Choi, Yun-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • We investigate the dependence of occurrence of bar in galaxies on galaxy properties and environment. The environmental conditions considered include the large-scale background density and distance to the nearest neighbor galaxy. We use a volume-limited sample of 33,296 galaxies brighter than $M_r$=-19.5+5logh at $0.02{\leqq}z{\leqq}0.05489$, drawn from the Sloan Digital Sky Survey Data Release 7. We classify the galaxies into early and late types, and identify bars by visual inspection. We find that the fraction of barred galaxies ($f_{bar}$) is 18.2% on average in the case of late-type galaxies, and depends on both u-r color and central velocity dispersion $(\sigma);f_{bar}$ is a monotonically increasing function of u-r color, and has a maximum value at intermediate velocity dispersion (${\sigma}{\simeq}170km\;s^{-1}$). This trend suggests that bars are dominantly hosted by systems having intermediate-mass with no recent interaction or merger history. We also find that $f_{bar}$ does not directly depend on the large-scale background density as its dependence disappears when other physical parameters are fixed. We discover the bar fraction decreases as the separation to the nearest neighbor galaxy becomes smaller than 0.1 times the virial radius of the neighbor regardless of neighbor's morphology. These results imply that it is difficult for bars to be maintained during strong tidal interactions, and that the source for this phenomenon is gravitational and not hydrodynamical.

  • PDF

An Experimental Study on Longitudinal Shear Capacity of Composite Slab Embedded with Silence Insulator (방음재를 삽입한 합성슬래브의 수평전단성능에 관한 실험적 연구)

  • Lee, Seon-Keun;Lee, Chy-Hyoung;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.64-71
    • /
    • 2018
  • This paper provides the results for experimental study on longitudinal shear performance for new-concept composite slabs embedded with silence insulator. Longitudinal shear capacity tests are used to predict characteristics of composite action between the concrete block, silence insulator and deckplate. A total set of 7 Push-Down specimens are tested to clarify the composite action between the concrete block, silence insulator and deckplate. Parameters in this study are the width of T-type bar, the depth of reinforced bar and the thickness of silence insulator. The results from experimental study on longitudinal shear capacity for new-concept composite slabs applied T-type bar, Reinforced bar and Silence insulator are summarized as follows. In test result, the Longitudinal Shear Capacity of the new concept specimen is 2 times excellent than basic specimen with safety. It is expected that applying the proposed composite slab detail at the actual site will provide a significant safety factor in structural aspect of the existing composite slab, and greatly contribute to the improvement capacities of resisting vibration and sound.

Basic Experimental Study on the Application of Biofuel to a Diesel Engine (바이오연료의 엔진 적용을 위한 실험적 기초연구)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1163-1168
    • /
    • 2011
  • Compared with the spark-ignition gasoline engine, the compression-ignition diesel engine has reduced fuel consumption due to its higher thermal efficiency. In addition, this reduction in the fuel consumption also leads to a reduction in $CO_2$ emission. Diesel engines do not require spark-ignition systems, which makes them less technically complex. Thus, diesel engines are very suitable target engines for using biofuels with high cetane numbers. In this study, the spray characteristics of biofuels such as vegetable jatropha oil and soybean oil were analyzed and compared with those of diesel oil. The injection pressures and blend ratios of jatropha oil and diesel oil (BD3, BD5, and BD20) were used as the main parameters. The injection pressures were set to 500, 1000, 1500, and 1600 bar. The injection duration was set to $500{\mu}s$. Consequently, it was found that there is no significant difference in the characteristics of the spray behavior (spray angle) in response to changes in the blend ratio of the biodiesel or changes in the injection pressure. However, at higher injection pressures, the spray angle decreased slightly.

Evaluation of Image Quality by Using Various Detector Materials according to Density : Monte Carlo Simulation Study (몬테카를로 시뮬레이션 기반 밀도에 따른 다양한 검출기 물질을 적용한 획득 영상 평가)

  • LEE, Na-Num;Choi, Da-Som;Lee, Ji-Su;Park, Chan-Rok
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.459-464
    • /
    • 2021
  • The detector performance is important role in acquiring the gamma rays from patients. Among parameters of detector performances, there is density, which relates to respond to gamma rays. Therefore, we confirm the detection efficiency according to various detector materials based on the density parameter using GATE (geant4 application for emission tomography) simulation tool. The NaI (density: 3.67 g/cm3), CZT (Cadimium Zinc Telluride) (density: 5.80 g/cm3), CdTe (Cadmium Telluride) (5.85 g/cm3), and GAGG (Gadoinium Aluminum Gallium Garnet) (density g/cm3) were used as detector materials. In addition, the point source and quadrant bar phantom, which is modeled for 0.5, 1.0, 1.5, and 2.0 mm thicknesses, were modeled to confirm the quatitative analysis using sensitivity (cps/MBq) and the full width at half maximum (FWHM, mm) at the 2.0 mm bar thickness containing visual evaluation. Based on the results, the sensitivity for NaI, CZT, CdTe, and GAGG detector materials were 0.12, 0.15, 0.16, and 0.18 cps/MBq. In addition, the FWHM for quadrant bar phantom in the 2.0 mm bar thickness is 3.72, 3.69, 3.70, and 3.73 mm for NaI, CZT, CdTe, and GAGG materials, respectively. Compared with performance of detector materials according to density, the high density can improve detection efficiency in terms of sensitivity and mean count. Among these detector materials, the GAGG material is efficient for detection of gamma rays.