• Title/Summary/Keyword: Bandwidth efficient modulation

Search Result 57, Processing Time 0.025 seconds

Correlative Encoded Frequency Shift Keying (CEFSK) Modulation Technique

  • Lee, Kee-Hoon;Seo, Jong-Soo
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.35-37
    • /
    • 2004
  • A new power and bandwidth efficient modem technique-Correlative Encoded FSK (CEFSK) is proposed. CEFSK has a spectral efficiency comparable to Gaussian filtered FSK (GFSK), and it achieves 0.7db Eb/N0 improvement at bit error rate (BER) of 1 * 10 -4 over GFSK in an additive white Gaussian noise (AWGN) channel and 3.0dB improvement in a Rayleigh fading channel

Verification of the feasibility of higher-order modulation for long-range communication in deep water (심해 장거리 통신에서의 고차 변조 기법의 활용 가능성 검증)

  • Kim, Donghyeon;Kim, J.S.;Hahn, Joo Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.428-438
    • /
    • 2021
  • For long-range communication in deep water, low carrier frequency is efficient due to a decrease in transmission loss. However, there is a limitation in that the data rate decreases due to a narrow bandwith. In order to increase the data rate in an environment with a limited bandwidth, it is necessary to design a higher-order modulation scheme. This paper analyzes the long-range communication data modulated by higher-order modulation schemes. The long-range communication experiment (23 km ~) was conducted in East Sea in October 2020. During the experiment, a vertical line array was utilized and communication sequences were modulated by Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) schemes and transmitted by a towed source. In more detail, PSK modulation consists of quadrature PSK and 8PSK, QAM modulation consists of 8QAM and 16QAM. Time reversal processing is applied to mitigate inter-symbol interference by utilizing the correlation between received signals and channel impulse responses. All modulation schemes show successful results at 23 km range, demonstrating the feasibility of higher-order modulation in long-range communication.

Turbo Trellis Coded Modulation with Multiple Symbol Detection (다중심벌 검파를 사용한 터보 트렐리스 부호화 변조)

  • Kim Chong Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.2
    • /
    • pp.105-114
    • /
    • 2000
  • In this paper, we propose a bandwidth-efficient channel coding scheme using the turbo trellis-coded modulation with multiple symbol detection. The turbo code can achieve good bit error rates (BER) at low SNR. That comprises two binary component codes and an interleaver. TCM codes combine modulation and coding by optimizing the euclidean distance between codewords. This can be decoded with the Viterbi or the symbol-by- symbol MAP algorithm. But we present the MAP algorithm with branch metrics of the Euclidean distance of the first phase difference as well as the Lth phase difference. The study shows that the turbo trellis-coded modulation with multiple symbol detection can improve the BER performance at the same SNR.

  • PDF

Signal Space Representation of Half-Symbol-Rate-Carrier PSK Modulations

  • Yeo, Hyeop-Goo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.304-308
    • /
    • 2009
  • This paper proposes a new concept of a signal constellation of the recently introduced half-symbol-rate-carrier phase-shift keying (HSRC-PSK) modulations for bandwidth-efficient high speed data communications. Since the HSRC-PSK modulations contain different symbol energies representing the same bit sequences due to the loss of orthogonality of their HSRC signals, it is very hard to represent the symbol using the conventional signal constellation. To resolve the problem, two different energies are assigned to represent one symbol for the HSRC offset quadrature phase shift keying (OQPSK) modulation. Similarly, the different energies exist to display the different symbol for HSRC minimum shift keying (MSK) modulation. With the proposed signal space representation, HSRC-PSK symbol can easily be shown with a two-dimensional scatter plot which provides helpful information of evaluating HSRC-PSK signal's quality.

Bandwidth-Efficient Selective Retransmission for MIMO-OFDM Systems

  • Zia, Muhammad;Kiani, Tamoor;Saqib, Nazar A.;Shah, Tariq;Mahmood, Hasan
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.66-76
    • /
    • 2015
  • In this work, we propose an efficient selective retransmission method for multiple-input and multiple-output (MIMO) wireless systems under orthogonal frequency-division multiplexing (OFDM) signaling. A typical received OFDM frame may have some symbols in error, which results in a retransmission of the entire frame. Such a retransmission is often unnecessary, and to avoid this, we propose a method to selectively retransmit symbols that correspond to poor-quality subcarriers. We use the condition numbers of the subcarrier channel matrices of the MIMO-OFDM system as a quality measure. The proposed scheme is embedded in the modulation layer and is independent of conventional hybrid automatic repeat request (HARQ) methods. The receiver integrates the original OFDM and the punctured retransmitted OFDM signals for more reliable detection. The targeted retransmission results in fewer negative acknowledgements from conventional HARQ algorithms, which results in increasing bandwidth and power efficiency. We investigate the efficacy of the proposed method for optimal and suboptimal receivers. The simulation results demonstrate the efficacy of the proposed method on throughput for MIMO-OFDM systems.

Conceptual Design of GK2A UHRIT Broadcasting using DVB-S2 (DVB-S2 표준을 적용한 정지궤도복합위성 UHRIT 통신 개념설계)

  • Park, Durk-Jong;Lim, Hyun-Su;Ahn, Sang-Il
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.156-162
    • /
    • 2013
  • In the communication between satellite and ground station, data rate can be determined from the data volume and required transmission time. Increasing data rate can be limited according to the available bandwidth. For the reason, it has been popularly studying on high spectral-efficient modulation scheme in large volume data application such as digital video broadcasting service. This paper presents the conceptual design of UHRIT broadcasting in GEO-KOMPSAT-2A (GK2A) mission by using DVB-S2 standard. Based on the recently determined data rate, UHRIT bandwidth was calculated at the various modulation schemes and code rates of DVB-S2 standard. Receiving performance of global user station was also evaluated thorough link analysis by considering that user station is located at the edge of beam coverage. Finally, maximum data rate was analyzed in a situation that COMS HRIT bandwidth should be alternatively applied for UHRIT downlink.

CACB-Q2PSK Modulation for Efficient Bandwidth Utilization and Constant Amplitude Signal Transmission (효율적인 대역폭 이용과 정진폭 신호 전송을 위한 CACB-Q2PSK 변조)

  • Hong, Dae-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.93-99
    • /
    • 2008
  • In this paper, we propose new modulation schemes using the conventional CACB modulation with constant amplitude property. Also the proposed modulation schemes supports high transmission data rate by increasing the spectral efficiency. In order to obtain the high spectral efficiency, the $Q^2$PSK and CA-$Q^2$PSK are used. We explain the simplest combining modulation scheme of CACB and $Q^2$PSK (i.e., CACB-$Q^2$PSK). However, this modulation scheme cannot support the constant amplitude property. Hence the first CACB-CA-$Q^2$PSK (or CACB-CA-$Q^2$PSK I) modulation scheme is proposed for the constant amplitude property. In the modulation scheme, the redundant constant amplitude encoding (spectral efficiency decrease) is required. Therefore, the second CACB-CA-$Q^2$PSK (or CACB-CA-$Q^2$PSK II) modulation scheme is proposed retaining the constant amplitude and the spectral efficiency. Computer simulations show that the proposed CACB-CA-$Q^2$PSK II is the efficient modulation scheme.

Optical Components for High Speed Optical Communications (대용량 광통신 부품 기술 동향)

  • Baek, Yongsoon
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.297-310
    • /
    • 2013
  • With the explosive growth of internet data traffic due to the FTTH penetration, prevalence of smart devices and cloud network service, the demand for higher bandwidth is ever increasing with the pace of more than 40% annual growth. To accommodate ultra high bandwidth traffic, optical components in each hierarchy have progressed rapidly. WDM has begun to be deployed along with higher bandwidth service in the access network. Next-generation ROADM is under development for efficient network management in the metro network. For long-haul transmission, an advanced modulation scheme based on coherent transmission technology has been adopted to enhance spectral efficiency. In this paper, core components to meet the demands of high speed, high efficiency and low power consumption will be reviewed.

Bandwidth Allocation Under Multi-Level Service Guarantees of Downlink in the VLC-OFDM System

  • Liu, Shuangxing;Chi, Xuefen;Zhao, Linlin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.704-715
    • /
    • 2016
  • In this paper, we explore a low-complex bandwidth allocation (BA) scheme with multi-level service guarantees in VLC-OFDM systems. Effective capacity theory, which evaluates wireless channel capacity from a novel view, is utilized to model the system capacity under delay QoS constraints of the link layer. Since intensity modulation of light is used in the system, problems caused by frequency selectivity can be neglected. Then, the BA problem can be formulated as an integer programming problem and it is further relaxed and transformed into a concave one. Lagrangian formulation is used to reformulate the concave problem. Considering the inefficiency of traditional gradient-based schemes and the demand for distributed implementation in local area networks, we localize the global parameters and propose a quasi-distributed quadratic allocation algorithm to provide two-level service guarantees, the first level is QoS oriented, and the second level is QoE oriented. Simulations have shown the efficient performance of the proposed algorithm. The users with more stringent QoS requirements require more subcarriers to guarantee their statistical delay QoS requirements. We also analyze the effect of subcarrier granularity on the aggregate effective capacity via simulations.

Novel Spectrally Efficient UWB Pulses Using Zinc and Frequency-Domain Walsh Basis Functions

  • Chaurasiya, Praveen;Ashrafi, Ashkan;Nagaraj, Santosh
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.397-405
    • /
    • 2013
  • In this paper, two sets of spectrally efficient ultra-wideband (UWB) pulses using zinc and frequency-domain Walsh basis functions are proposed. These signals comply with the Federal Communications Commission (FCC) regulations for UWB indoor communications within the stipulated bandwidth of 3.1 GHz to 10.6 GHz. They also demonstrate high energy spectral efficiency by conforming more closely to the FCC mask than other UWB signals described in the literature. The performance of these pulses under various modulation techniques is discussed in this paper, and the proposed pulses are compared with Gaussian monocycles in terms of spectral efficiency, autocorrelation, crosscorrelation, and bit error rate performance.