Browse > Article
http://dx.doi.org/10.7776/ASK.2021.40.5.428

Verification of the feasibility of higher-order modulation for long-range communication in deep water  

Kim, Donghyeon (KIOST-KMOU OST School)
Kim, J.S. (Korea Maritime and Ocean University)
Hahn, Joo Young (Agency for Defense Development)
Abstract
For long-range communication in deep water, low carrier frequency is efficient due to a decrease in transmission loss. However, there is a limitation in that the data rate decreases due to a narrow bandwith. In order to increase the data rate in an environment with a limited bandwidth, it is necessary to design a higher-order modulation scheme. This paper analyzes the long-range communication data modulated by higher-order modulation schemes. The long-range communication experiment (23 km ~) was conducted in East Sea in October 2020. During the experiment, a vertical line array was utilized and communication sequences were modulated by Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) schemes and transmitted by a towed source. In more detail, PSK modulation consists of quadrature PSK and 8PSK, QAM modulation consists of 8QAM and 16QAM. Time reversal processing is applied to mitigate inter-symbol interference by utilizing the correlation between received signals and channel impulse responses. All modulation schemes show successful results at 23 km range, demonstrating the feasibility of higher-order modulation in long-range communication.
Keywords
Deep water; Long-range communication; Time reversal processing; Higher-order modulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. C. Song, "Acoustic communication in deep water exploiting multiple beams with a horizontal array," J. Acoust. Soc. Am. 132, EL81-EL87 (2012).   DOI
2 H. C. Song and M. Dzieciuch, "Feasibility of global-scale synthetic aperture communications," J. Acoust. Soc. Am. 125, 8-10 (2009).   DOI
3 H. S. Kim, S. H. Kim, J. W. Choi, and H. S. Bae,, "Bidirectional equalization based on error propagation detection in long-range underwater acoustic communication," Jpn. J. Appl. Phys. 58, SGGF01 (2019).   DOI
4 H. C. Song, S. Cho, T. Kang, W. S. Hodgkiss, and J. R. Preston, "Long-range acoustic communication in deep water using a towed array," J. Acoust. Soc. Am. 129, EL71-EL75 (2011).   DOI
5 T. Shimura, H. Ochi, and Y. Watanabe, "Time - reversal communication in deep ocean - results of recent experiments," Proc. 2011 IEEE Symposium on Underwater Technology and Workshop on Scienfitic Use of Submarine Cables and Related Technologies, 1-5 (2011).
6 H. C. Song and W. S. Hodgkiss, "Diversity combining for long-range acoustic communication in deep water," J. Acoust. Soc. Am. 132, EL68-EL73 (2012).   DOI
7 T. Kang, H. C. Song, and W. S. Hodgkiss,, "Long-range multi-carrier acoustic communication in deep water using a towed horizontal array," J. Acoust. Soc. Am. 131, 4665-4671 (2012).   DOI
8 T. Shimura, Y. Watanabe, H. Ochi, and H. C. Song, "Long-range time reversal communication in deep water : Experimental results," J. Acoust. Soc. Am. 132, EL49-EL53 (2012).   DOI
9 M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, Boston, 2001), pp. 411-420.
10 H. C. Song, "An overview of underwater time-reversal communication," IEEE J. Ocean Eng. 41, 644-655 (2016).   DOI
11 T. Shimura, Y. Kida, M. Deguchi, Y. Watanabe, and H. Ochi, "At-sea experiment of adaptive time-reversal multiuser communication in the deep ocean," Jpn. J. Appl. Phys. 54, 07HG02 (2015).   DOI
12 J. Lee, H. Lee, K. Kim, and W. Kim, "Sea trial results of long range underwater acoustic communication based on frequency modulation in the East Sea" (in Korean), J. Acoust. Soc. Kr. 38, 371-377 (2019).
13 H. Park, D. Kim, J. S. Kim, J. Hahn, and J. Park, "Performance improvement of long-range underwater acoustic communication in deep water using spatiotemporal diversity" (in Korean), J. Acoust. Soc. Kr. 38, 587-592 (2019).
14 G. F. Edelmann, H. C. Song, S. Kim, W. S. Hodgkiss, W. A. Kuperman, and T. Akai, "Underwater acoustic communication using time reversal," IEEE J. Ocean Eng. 30, 852-864 (2005).   DOI
15 H. C. Song, W. S. Hodgkiss, W. A. Kuperman, M. Stevenson, and T. Akai, "Improvement of time-reversal communications using adaptive channel equalizers," IEEE J. Ocean Eng. 31, 487-496 (2006).   DOI
16 D. Kim, H. Park, J. S. Kim, J. Hahn, and J. Park, "Performance analysis of underwater acoustic communication based on beam diversity in deep water" (in Korean), J. Acoust. Soc. Kr. 38, 678-686 (2019).
17 H. C. Song, W. A. Kuperman, and W. S. Hodgkiss, "Basin-scale time reversal communications," J. Acoust. Soc. Am. 125, 212-217 (2009).   DOI
18 A. Plaisant, "Long range acoustic communications," Proc. IEEE OCEANS'98 Conference, 1 (1998).
19 T. Shimura, Y. Watanabe, H. Ochi, and T. Hattori, "Basic at-sea experiment for long horizontal time-reversal communication in deep ocean," Proc. Acoustics '08, 10375-10380 (2008).
20 M. Stojanovic, J. Catipovic, and J. G. Proakis, Acoustic Signal Processing for Ocean Exploration (Springer, Dordrecht, 1993), pp.607-612.
21 Y. Zhou, A. Song, and F. Tong, "Underwater acoustic channel characteristics and communication performance at 85 kHz," J. Acoust. Soc. Am. 142, EL350-EL355 (2017).   DOI
22 Z. Liu. K. Yoo, T. C. Yang, S. E. Cho, H. C. Song, and D. E. Ensberg "Long-range double-differentially coded spread-spectrum acoustic communications with a towed array," IEEE J. Ocean Eng. 39, 482-490 (2014).   DOI
23 H. C. Song, W. S. Hodgkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akai, and M. Stevenson, "Spatial diversity in passive time reversal communication," J. Acoust. Soc. Am. 120, 2067-2076 (2006).   DOI
24 T. Shimura, H. Ochi, Y. Watanabe, and T. Hatton, "Experiment results of time-reversal communication at the range of 300 km," Jpn. J. Appl. Phys. 49, 07HG11 (2010).
25 D. B. Kilfoyle and A. B. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE J. Ocean Eng. 25, 4-27 (2000).   DOI
26 Y. Kida, M. Deguchi, and T. Shimura, "Experimental results for a high-rate underwater acoustic communication in deep sea for a manned submersible SHINKAI 6500," J. Marine Acoust. Soc. Jpn. 43, 197-203 (2018).
27 M. Stojanovic, J. Catipovic, J . G. Proakis, "Adaptive multichannel combining and equalization for underwater acoustic communications," J. Acoust. Soc. Am. 94, 1621-1631 (1993).   DOI
28 T. Shimura, H. Ochi, and H. C. Song, "Experimental demonstration of multiuser communication in deep water using time reversal," J. Acoust. Soc. Am. 134, 3223-3229 (2013).   DOI
29 G. F. Edelmann, T. Akai, W. S. Hodgkiss, S. Kim, W. A. Kuperman, and H. C. Song, "An initial demonstration of underwater acoustic communication using time reversal," IEEE J. Ocean Eng. 27, 602-609 (2002).   DOI