• 제목/요약/키워드: Band GAp Energy

검색결과 705건 처리시간 0.027초

가시광 수소생산용 CdSe/ZnO nanorod 투명전극 (CdSe Sensitized ZnO Nanorods on FTO Glass for Hydrogen Production under Visible Light Irradiation)

  • 김현;양비룡
    • 한국수소및신에너지학회논문집
    • /
    • 제24권2호
    • /
    • pp.107-112
    • /
    • 2013
  • The ZnO is able to produce hydrogen from water however it can only absorb ultraviolet region due to its 3.37eV of wide band gap. Therefore efficiency of solar hydrogen production is low. In this work we report investigation results of improved visible light photo-catalytic properties of CdSe quantum dots(QDs) sensitized ZnO nanorod heterostructures. Hydrothermally vertically grown ZnO nanorod arrays on FTO glass were sensitized with CdSe by using SILAR(successive ionic layer adsorption and reaction) method. Morphology of grown ZnO and CdSe sensitized ZnO nanorods had been investigated by FE-SEM that shows length of $2.0{\mu}m$, diameter of 120~150nm nanorod respectively. Photocatalytic measurements revealed that heterostructured samples show improved photocurrent density under the visible light illumination. Improved visible light performance of the heterostructures is resulting from narrow band gap of the CdSe and its favorable conduction band positions relative to potentials of ZnO band and water redox reaction.

Hot Wall Epitaxy 방법에 의해 성장된 AgInS2 박막의 광전류 온도 의존성 (Temperature dependence of photocurrent for the AgInS2 epilayers grown by hot wall epitaxy)

  • 박창선;홍광준;이상열;유상하;이봉주
    • 센서학회지
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2007
  • A silver indium sulfide ($AgInS_{2}$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_{2}$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_{2}$ was investigated by means of the photocurrent measurement. The crystal field splitting, ${\Delta}cr$, and the spin orbit splitting, ${\Delta}so$, have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_{g}$(T), was determined.

M-Doped TiO2 (M=Co, Cr, Fe)의 제조 : 전자 밴드구조-(1) (Fabrication of M-Doped TiO2 (M=Co, Cr, Fe) : Its Electronic Band Structure-(1))

  • 배상원;김현규;지상민;장점석;정의덕;홍석준;이재성
    • 한국세라믹학회지
    • /
    • 제43권1호
    • /
    • pp.22-27
    • /
    • 2006
  • The electronic band structures of Metal-doped titanium dioxide, M-doped $TiO_2$ (M=Co, Cr, Fe), have been studied by using XRD, UV-vis diffuse reflectance spectrometer and FP-LAPW (Full-Potential Linearized Augmented-Plane-Wave) method. The UV-vis of M-doped $TiO_2$ (M=Co, Cr, Fe) showed two absorption edges; the main edge due to the titanium dioxide at 387 nm and a shoulder due to the doped metals at around 560 nm. The band gap energies of Co, Cr and Fe-doped $TiO_2$ calculated by FP-LAPW method were 2.6, 2.0, and 2.5 eV, respectively. The theoretically calculated band gap energy of $TiO_2$ by using FP-LAPW method was the same as experimental results. FP-LAPW method will be useful for fabrication and development of photo catalysts working under visible light.

Optical properties of $\beta$-$In_2S_3$ and $\beta$-$In_2S_3$:$Co^{2+}$ Thin Films

  • Kim, Hyung-Gon;Kim, Nam-Oh;Jin, Moon-Seog;Oh, Seok-Kyun;Kim, Wha-Tek
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권1호
    • /
    • pp.27-31
    • /
    • 2001
  • $\beta$-$In_2S_3$ and $\beta$-$In_2S_3$:$Co^{2+}$ thin films were grown using the spray pyrolysis method. The thin films crystallized into tetragonal structures. The indirect energy band gap of the thin films was found to be 2.32 eV for $\beta$-$In_2S_3$ and 1.81 eV for $\beta$-$In_2S_3$:$Co^{2+}$(Co:1.0 mol%) at 198K. The direct energy band gap was found to be 2.67 eV for $\beta$-$In_2S_3$ and 2.17 eV for $\beta$-$In_2S_3$:$Co^{2+}$(Co:1.0 mol%). Impurity optical absorption peaks were observed for the ${\beta}$-$In_2S_3$:$Co^{2+}$ thin films. These impurity absorption peaks are assigned, based on the crystal field theory, to the electron transitions between the energy levels of the $Co^{2+}$ ion sited in $T_{d}$ symmetry.

  • PDF

Synthesis and Spectroscopic Analysis of Trans-A2B2 Metallo-Porphyrin Derivatives as Heterojunction Modulator for Organic Solar Cell

  • Jeon, Yea-Sel;Hwang, Kwang-Jin
    • Rapid Communication in Photoscience
    • /
    • 제3권3호
    • /
    • pp.59-60
    • /
    • 2014
  • The trans-$A_2B_2$ porphyrin and Ni-porphyrin derivatives were synthesized by Suzuki coupling of bromoporphyrin with arylborate as a key step. The band gaps of those complexes were measured from their absorption, emission and cyclic voltammetric data. All the LUMO energy level of porphyrin derivatives is lower than that of P3HT, and the HOMO energy level is evaluated higher than the HOMO of PCBM.

Optoelectrical Properties of HgCdTe Epilayers Grown by Hot Wall Epitaxy

  • Yun, Suk-Jin;Hong, Kwang-Joon
    • 센서학회지
    • /
    • 제13권4호
    • /
    • pp.277-281
    • /
    • 2004
  • $Hg_{1-x}Cd_{x}Te$ (MCT) was grown by hot wall epitaxy. Prior to the MCT growth, the CdTe (111) buffer layer was grown on the GaAs substrate at the temperature of $590^{\circ}C$ for 15 min. When the thickness of the CdTe buffer layer was $5{\mu}m$ or thicker, the full width at half maximum values obtained from the x-ray rocking curves were found to significantly decrease. After a good quality CdTe buffer layer was grown, the MCT epilayers were grown on the CdTe (111)/GaAs substrate at various temperatures in situ. The crystal quality for those epilayers was investigated by means of the x-ray rocking curves and the photocurrent experiment. The photoconductor characterization for the epilayers was also measured. The energy band gap of MCT was determined from the photocurrent measurement and the x composition rates from the temperature dependence of the energy band gap were turned out.

Optical and Dielectric Properties of Reduced SrTiO3 Single Crystals

  • Kang, Bong-Hoon
    • 한국세라믹학회지
    • /
    • 제48권4호
    • /
    • pp.278-281
    • /
    • 2011
  • The optical band gap energy for $SrTiO_3$ by reduction at high temperature was 3.15 eV. The reflectivity of reduced $SrTiO_3$ single crystals showed little variation, however, the reflectivity by the reduction condition had no effect. For the phonon mode at about 790 $cm^{-1}$, a blue-shift took place upon $N_2$ reduction and the decreased. However, a red-shift took place upon a $H_2-N_2$ reduction and the increased at the same phonon mode. With decreasing temperature the dielectric constant decreased rapidly. The thermal activation energies were 0.92-1.02 eV.

Hot wall epitaxy에 의해 성장된 HgCdTe 에피레이어의 광전기적특성 (Opto-electrical properties for a HgCdTe epilayers grown by hot wall epitaxy)

  • 홍광준
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.152-152
    • /
    • 2003
  • Hg$\sub$l-x/Cd$\sub$x/Te (MCT) was grown by hot wall epitaxy. Prior to the MCT growth, the CdTe (111) buffer layer was grown on the GaAs substrate at the temperature of 590$^{\circ}C$ for 15 min. When the thickness of the CdTe buffer layer was 5 $\mu\textrm{m}$ or thicker, the full width at half maximum values obtained from the x-ray rocking curves were found to significantly decrease. After a good quality CdTe buffer layer was grown, the MCT epilayers were grown on the CdTe (111) /GaAs substrate at various temperatures in situ. The crystal quality for those epilayers was investigated by means of the x-ray rocking curves and the photocurrent experiment The photoconductor characterization for the epilayers was also measured The energy band gap of MCT was determined from the photocurrent measurement and the x composition rates from the temperature dependence of the energy band gap were turned out

  • PDF

2차원 MoS2 물질 기반의 전자소자 연구 (Introduction to research of atomically thin MoS2 and its electrical properties)

  • 이탁희;김태영;조경준;박진수
    • 진공이야기
    • /
    • 제3권1호
    • /
    • pp.9-15
    • /
    • 2016
  • Molybdenum disulfide ($MoS_2$), which has 0.65 nm-thick atomic layer, can be easily separated layer by layer due to weak van der Waals interactions in out-of-plane direction. ($MoS_2$), has a good potential in nanoelectronics, because it has high electrical mobility and On/Off ratio. Its band gap energy changes from indirect to direct band gap energy as it goes from bulk to monolayer. Therefore, atomically thin ($MoS_2$), is widely studied in academic and engineering fields. Here, we introduce the research of atomically thin $MoS_2$ and discuss the research directions.

Effect of Ga, S Additions in CuInSe$_2$ for Solar Cell Applications

  • Kim, Kyoo-Ho
    • 한국표면공학회지
    • /
    • 제37권4호
    • /
    • pp.191-195
    • /
    • 2004
  • Gallium or sulphur additions in $CuInSe_2$ were prepared using RF magnetron sputtering and pulsed laser deposition respectively. All of the observed thin films shows a chalcopyrite structure with the S and Ga addition increases the favourable (112) peak. The optical absorption coefficients were slightly decreased. The energy band gap of films could be shifted from 1.04 to 1.68 eV by adjusting the mole ratio of S/(S+Se) and Ga/(In+Ga). It is possible to obtain the optimum energy band gap by adding S or Ga solute at a certain ratio in favour of Se and In respectively. It is also necessary to control the ratio of Ga and S additions and to retain a certain portion of In and Se to provide better properties of thin films.