Browse > Article
http://dx.doi.org/10.5369/JSST.2004.13.4.277

Optoelectrical Properties of HgCdTe Epilayers Grown by Hot Wall Epitaxy  

Yun, Suk-Jin (Department of Chemistry Education, Chosun University)
Hong, Kwang-Joon (Department of Physics, Chosun University)
Publication Information
Journal of Sensor Science and Technology / v.13, no.4, 2004 , pp. 277-281 More about this Journal
Abstract
$Hg_{1-x}Cd_{x}Te$ (MCT) was grown by hot wall epitaxy. Prior to the MCT growth, the CdTe (111) buffer layer was grown on the GaAs substrate at the temperature of $590^{\circ}C$ for 15 min. When the thickness of the CdTe buffer layer was $5{\mu}m$ or thicker, the full width at half maximum values obtained from the x-ray rocking curves were found to significantly decrease. After a good quality CdTe buffer layer was grown, the MCT epilayers were grown on the CdTe (111)/GaAs substrate at various temperatures in situ. The crystal quality for those epilayers was investigated by means of the x-ray rocking curves and the photocurrent experiment. The photoconductor characterization for the epilayers was also measured. The energy band gap of MCT was determined from the photocurrent measurement and the x composition rates from the temperature dependence of the energy band gap were turned out.
Keywords
$Hg_{1-x}Cd_{x}Te$; hot wall epitaxy; CdTe buffer layer; photocurrent; photoconductor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. H. Weiler, In: Semiconductors and Semimetals, Eds. R. K. Willardson and A. C. Beer (Academic, New York, 1981) vol. 16, p. 180
2 R. H. Bube, Phys. Rev., vol. 101, pp. 1668, 1956   DOI
3 R. H. Bube, Photoconductivity of Solids (Wiley, New York, 1969) p. 391
4 R. Korenstein, P. Hallock, and B. MacLeod, J. Vac. Sci. Technol., vol. B9, pp. 630, 1991
5 B. Pelliciari, J. Crystal Growth, vol. 86, pp. 146, 1988   DOI   ScienceOn
6 I. Bath, J. Crystal Growth, vol. 117, pp. I, 1992   DOI
7 J. M. Arias, S. H. Shin, J. G. Pasko, R. E. DeWames, and E. R. Gertner, J. Appl. Phys., vol. 65, pp. 1747, 1989   DOI
8 P. S. Wijewamasuriya, M. Boukerche, and J. P. Faurie, J. Appl. Phys., vol. 67, pp. 859, 1990   DOI
9 M. Kasuga, D. Kodama, H. H. Agiwara, and K. Kagami, J. Jpn. Assoc. Crystal Growth, vol. 21, pp. 5377, 1994
10 K. Shigenaka, L. Sugiura, F. Nakata, and K. Hiral1ara, J. Crystal Growth, vol. 145, pp. 145, 1994
11 S. J. G. Pasko, and R. E. DeWames, J. Vac. Sci. Technol., vol. B10, pp. 1492, 1992   DOI
12 R. Sporken, Y. P. Chen, S. Sivananthan, M. D. Lange, and J. P. Faurie, J. Vac. Sci. Technol., vol. B10, pp. 1405, 1992
13 J. P. Fourie, C. Hsu, S. Sivananthan, and X. Chu, Surf. Sci., vol. 168, pp. 473, 1986   DOI   ScienceOn
14 J. F. Wang, K. Kikuchi, B. H. Koo, Y. Ishikawa, W. Uchida, and M. Isshiki, J. Crystal Growth, vol. 187, pp. 373, 1998   DOI   ScienceOn
15 S. D. Chen, L. Lin, X. Z. He, M. J. Ying, and R. Q. Wu, J. Crystal Growth, vol. 152, pp. 261, 1995   DOI   ScienceOn
16 D. D. Edwall, J. Bajai, and E. R. Gertner, J. Vac. Sci. Technol., vol. A8, pp. 1045, 1990
17 C. C. Klick, Phys. Rev., vol. 89, pp. 274, 1953   DOI