• 제목/요약/키워드: Banach space valued random elements

검색결과 6건 처리시간 0.017초

ON COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE INDEPENDENT RANDOM ELEMENTS

  • Sung Soo-Hak;Cabrera Manuel Ordonez;Hu Tien-Chung
    • 대한수학회지
    • /
    • 제44권2호
    • /
    • pp.467-476
    • /
    • 2007
  • A complete convergence theorem for arrays of rowwise independent random variables was proved by Sung, Volodin, and Hu [14]. In this paper, we extend this theorem to the Banach space without any geometric assumptions on the underlying Banach space. Our theorem also improves some known results from the literature.

Banach 공간에서 독립인 확률요소들의 Tail 합에 대한 대수의 법칙에 대하여 (On the Tail Series Laws of Large Numbers for Independent Random Elements in Banach Spaces)

  • 남은우
    • 한국콘텐츠학회논문지
    • /
    • 제6권5호
    • /
    • pp.29-34
    • /
    • 2006
  • 본 연구에서는, Banach 공간의 값을 갖는 확률요소들의 합 $S_n=\sum_{i=1}^nV-i$ 수렴하는 경우에, Tail 합 $T_n=S-S_{n-1}=\sum_{i=n}^{\infty}V-i$에 대한 대수의 법칙을 고찰하여 $S_n$이 하나의 확률변수 S로 수렴하는 속도를 연구한다. 좀 더 구체적으로 말하자면, 확률변수들의 Tail 합과 확률요소들의 Tail 합에 대한 극한 성질의 유사성을 연구하여, Banach 공간에서 독립인 확률요소들의 Tail 합에 대한 약 대수의 법칙과 하나의 수렴법칙이 동등함을 기술하는 기존의 정리를 다른 대체적인 방법으로 증명한다.

  • PDF

Review on the Limiting Behavior of Tail Series of Independent Summands

  • Nam, Eun-Woo
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.185-190
    • /
    • 2005
  • For the almost certainly convergent series $S_n$ of independent random variables the limiting behavior of tail series ${T_n}{\equiv}S-S_{n-1}$ is reviewed. More specifically, tail series strong laws of large number and tail series weak laws of large numbers will be introduced, and their relationship will be investigated. Then, the relationship will also be extended to the case of Banach space valued random elements, by investigating the duality between the limiting behavior of the tail series of random variables and that of random elements.

  • PDF

MEAN CONVERGENCE THEOREMS AND WEAK LAWS OF LARGE NUMBERS FOR DOUBLE ARRAYS OF RANDOM ELEMENTS IN BANACH SPACES

  • Dung, Le Van;Tien, Nguyen Duy
    • 대한수학회보
    • /
    • 제47권3호
    • /
    • pp.467-482
    • /
    • 2010
  • For a double array of random elements {$V_{mn};m{\geq}1,\;n{\geq}1$} in a real separable Banach space, some mean convergence theorems and weak laws of large numbers are established. For the mean convergence results, conditions are provided under which $k_{mn}^{-\frac{1}{r}}\sum{{u_m}\atop{i=1}}\sum{{u_n}\atop{i=1}}(V_{ij}-E(V_{ij}|F_{ij})){\rightarrow}0$ in $L_r$ (0 < r < 2). The weak law results provide conditions for $k_{mn}^{-\frac{1}{r}}\sum{{T_m}\atop{i=1}}\sum{{\tau}_n\atop{j=1}}(V_{ij}-E(V_{ij}|F_{ij})){\rightarrow}0$ in probability where {$T_m;m\;{\geq}1$} and {${\tau}_n;n\;{\geq}1$} are sequences of positive integer-valued random variables, {$k_{mn};m{{\geq}}1,\;n{\geq}1$} is an array of positive integers. The sharpness of the results is illustrated by examples.