• Title/Summary/Keyword: Ball-on-3-ball test

Search Result 331, Processing Time 0.039 seconds

The effect of $FePO_4$ coating on electrochemical characteristics of $LiMn_2O_4$ ($FePO_4$ 코팅이 $LiMn_2O_4$의 전기화학적 특성에 미치는 영향)

  • Lee, Jae-Won;Kim, Ji-Hyun;Park, Sun-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.303-303
    • /
    • 2008
  • $LiMn_2O_4$는 출력특성이 좋고 가격이 저렴하지만 전해액 중에서 $Mn^{2+}$이 용출되어 나오는 것과 반복적인 충방전시 구조가 파괴되는 단점이 있어 이것을 보완하고자 $FePO_4\cdot2H_2O$$LiMn_2O_4$의 표면에 코팅하였다, $LiMn_2O_4$를 모재로, $FePO_4\cdot2H_2O$를 코팅재로 사용하여 $FePO_4\cdot2H_2O$의 코팅량 변화와, 열처리 온도변화에 따른 물성 변화를살펴보았다, LiOH 와 $MnO_2$의 혼합물을 $1000^{\circ}C$ 에서 소성하여 $LiMn_2O_4$를 합성하고, Fe$(NO_3)_3$ 수용액과 $NH_4H_2PO_4$ 수용액을 혼합하여 $FePO_4\cdot2H_2O$를 제조하였다, $LiMn_2O_4$$FePO_4\cdot2H_2O$를 1wt%, 2wt%, 3wt% 비율로 ball milling 을 통해 코팅한 후, 온도를 변화시키면서 열처리 하였다. 코팅한 물질을 XRD를 통해 구조를 분석하고 SEM을 이용하여 형상을 관찰하였다. 또한 고온에서의 $Mn^{2+}$의 용출량을 ICP로 측정하고 half-cell을 만들어 충방전 test를 통해 충방전 특성을 조사하였다. 아울러, 코팅량과 열처리 온도 등 합성변수들이 소재특성 및 전기화학적 특성에 미치는 영향을 조사하였다.

  • PDF

Simulation of Blasting Demolition Using Three-Dimensional Bonded Particle Model (삼차원 입자결합모델을 이용한 구조물 해체발파 모사 연구)

  • Shin Byung-Hun;Jeon Seok-Won
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.65-77
    • /
    • 2005
  • Reflecting the fact that there are increasing number of old high-story apartment structures in urban area, it is expected that the demand of blasting demolition will increase in the near future. It is of great important to make up for the insufficient empirical knowledge in blasting demolition through priori method such as computer simulation. Computer simulation of the blasting demolition involves complicated process. In the past domestic researches, two-dimensional bonded particle model was used to examine the overall demolition behavior of a five-story simple structure. It was observed that the two-dimensional simulation did not properly simulate the collapsing behavior of a structure mainly due to the reduced degree of freedom. In this study, three-dimensional simulation was tried. It consumed a great amount of calculation time, which limited the extent of the study. A few parameters, such as delay times, amount of charge at each hole, ball properties, were modified in order to check oui; their effect on the collapsing behavior. The differences were observed as expected but the collapsing behavior did not exactly coincide with the test blasting with a scaled model.

Performance Analysis of Low-level Radiation Shielding Sheet with Diamagnetic Nanoparticles

  • Cho, Jae-Hwan;Kim, Myung-Sam
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • In this study, the authors attempted to produce a medical radiation shielding fiber that can be produced at a nanosize scale and that is, unlike lead, harmless to the human body. The performance of the proposed medical radiation shielding fiber was then evaluated. First, diamagnetic bismuth oxide, an element which, among elements that have a high atomic number and density, is harmless to the human body, was selected as the shielding material. Next, 10-100 nm sized nanoparticles in powder form were prepared by ball milling the bismuth oxide ($Bi_2O_3$), the average particle size of which is $1-500{\mu}m$, for approximately 10 minutes. The manufactured bismuth oxide was formed into a colloidal solution, and the radiation shielding fabric was fabricated by curing after coating the solution on one side or both sides of the fabric. The thicknesses of the shielding sheets prepared with bismuth oxide were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0 mm. An experimental method was used to measure the absorbed dose and irradiation dose by using the lead equivalent test method of X-ray protection goods presented by Korean Industrial Standards; the resultant shielding rate was then calculated. From the results of this study, the X-ray shielding effect of the shielding sheet with 0.1 mm thickness was about 55.37% against 50 keV X-ray, and the X-ray shielding effect in the case of 1.0 mm thickness showed shielding characteristics of about 99.36% against 50 keV X-ray. In conclusion, it is considered that nanosized-bismuth radiation shielding fiber developed in this research will contribute to reducing the effects of primary X-ray and secondary X-ray such as when using a scattering beam at a low level exposure.

Discharge and Ozone Generation Characteristics by Permittivity of Dielectric Material installed in Water Surface Discharge (수표면 방전에 투입된 유전체의 유전율에 따른 방전 및 오존발생특성)

  • 박승록;김진규;김형표
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.56-63
    • /
    • 2003
  • A silent type ozone generator using water surface has been studied and improved its ozone generation characteristics by installing dielectric heads in the just under the surface of the wale- At this time, different permittivitis of dielectric beads were used to change the discharge condition of water surface. The current-voltage characteristics and characteristics of ozone generation quantity of the test system were investigated and discharge photos of glass beads were observed The height of Taylor cone may be the cause of the discharge bridge to decrease the ozone generation on the discharge spacing. In this study, the hight of Taylor cone could be controlled greatly by installing dielectric beads just under the water surface. Therefore a higher ozone generation also could be obtained. As the permittivity of dielectric material increased. discharge starting voltage was advanced and maximum 110 ppmy of ozone was generated by using the ferroelectric ball.

Effect of Sintering Condition on Tensile Strength of Fe-based Non-equiatomic High Entropy Alloy (철계 비동일분율 고엔트로피 합금의 인장 강도에 미치는 소결 조건 영향)

  • Seo, Namhyuk;Jeon, Junhyub;Kim, Gwanghun;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.221-226
    • /
    • 2021
  • We fabricate the non-equiatomic high-entropy alloy (NE-HEA) Fe49.5Mn30Co10Cr10C0.5 (at.%) using spark plasma sintering under various sintering conditions. Each elemental pure powder is milled by high-energy ball milling to prepare NE-HEA powder. The microstructure and mechanical properties of the sintered samples are investigated using various methods. We use the X-ray diffraction (XRD) method to investigate the microstructural characteristics. Quantitative phase analysis is performed by direct comparison of the XRD results. A tensile test is used to compare the mechanical properties of small samples. Next, electron backscatter diffraction analysis is performed to analyze the phase fraction, and the results are compared to those of XRD analysis. By combining different sintering durations and temperature conditions, we attempt to identify suitable spark plasma sintering conditions that yield mechanical properties comparable with previously reported values. The samples sintered at 900 and 1000℃ with no holding time have a tensile strength of over 1000 MPa.

Effects of Dual-Task Exercise on Breathing, Balance, and Activity of Daily Living in Stroke Patients (이중과제운동이 뇌졸중 환자의 호흡과 균형 및 일상생활활동에 미치는 영향)

  • Hyun Choi;Young-Jun Moon;Seung-Yun Baek
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.19 no.2
    • /
    • pp.91-98
    • /
    • 2024
  • PURPOSE: This study aimed to provide basic clinical data by investigating the impact of Activities of daily living-related dual-task intervention on lung function, balance, and Activities of daily living of stroke patients. METHODS: After sampling 40 stroke patients who met the selection criteria, this study randomly assigned 20 patients who received dual-task exercise intervention to the experimental group and 20 patients who received single exercise intervention to the control group by drawing lots. Next, the study pre-tested their lung function, balance, and activity of daily living. All interventions were conducted for 30 minutes, 3 times a week for 4 weeks, and when all interventions were completed after 4 weeks, lung function, balance, and activity of daily living were re-measured in the same way as the pre-test. RESULTS: In comparing changes in lung function, balance, and activity of daily living within each of the experimental and control groups, statistically significant improvement were found in the experimental group only (p < .01). Statistically significant improvement were also found in lung function, balance, and activities of daily living between the groups (p < .05) (p < .01). CONCLUSION: A statistically significant improvements were found in lung function, balance, and activities of daily living only in the experimental group and statistically significant differences were found between groups. Because they take arm exercises by maintaining balance in a standing position on a labile surface and through dual-task exercise such as folding a towel, moving a cup, and throwing and catching a ball, muscles related to lung function were stimulated and lung function and balance were improved. This helped activities of daily living to be improved. Thus, it is considered that dual-task exercise should be utilized for stroke patients' smooth everyday life.

Point-diffraction interferometer for 3-D profile measurement of light scattering rough surfaces (광산란 거친표면의 고정밀 삼차원 형상 측정을 위한 점회절 간섭계)

  • 김병창;이호재;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.504-508
    • /
    • 2003
  • We present a new point-diffraction interferometer, which has been devised for the three-dimensional profile measurement of light scattering rough surfaces. The interferometer system has multiple sources of two-point-diffraction and a CCD camera composed of an array of two-dimensional photodetectors. Each diffraction source is an independent two-point-diffraction interferometer made of a pair of single-mode optical fibers, which are housed in a ceramic ferrule to emit two spherical wave fronts by means of diffraction at their free ends. The two spherical wave fronts then interfere with each other and subsequently generate a unique fringe pattern on the test surface. A He-Ne source provides coherent light to the two fibers through a 2${\times}$l optical coupler, and one of the fibers is elongated by use of a piezoelectric tube to produce phase shifting. The xyz coordinates of the target surface are determined by fitting the measured phase data into a global model of multilateration. Measurement has been performed for the warpage inspection of chip scale packages (CSPs) that are tape-mounted on ball grid arrays (BGAs) and backside profile of a silicon wafer in the middle of integrated-circuit fabrication process. When a diagonal profile is measured across the wafer, the maximum discrepancy turns out to be 5.6 ${\mu}{\textrm}{m}$ with a standard deviation of 1.5 ${\mu}{\textrm}{m}$.

A Study on the Development of Compactability and Electrical Resistivity for P/M Fecralloy (P/M Fecralloy의 성형성 및 전기저항특성 향상에 관한 연구)

  • Park, Jin-Woo;Ko, Byung-Hyun;Jung, Woo-Young;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.426-431
    • /
    • 2016
  • The Fe-Cr-Al alloy system shows an excellent heat resistance because of the formation of an $Al_2O_3$ film on the metal surface in an oxidizing atmosphere at high temperatures up to $1400^{\circ}C$. The Fecralloy needs an additive that can act as a binder because of its bad compactability. In this study, the green compacts of STS434L and Al powder added to Fecralloy are oxidized at $950^{\circ}C$ for up to 210 h. Fecralloy and Al is mixed by two types of ball milling. One is vented to air and the other was performed in a sealed jar. In the case of Al addition, there are no significant changes in the electrical resistance. Before the oxidation test, Al oxides are present in the Fecralloy surface, as determined from the energy dispersive spectroscopy results. The addition of Al improves the compactability because of an increased density, and the addition of STS434L increases the electrical resistivity by forming a composite oxide.

Development and Usability Evaluation of Hand Rehabilitation Training System Using Multi-Channel EMG-Based Deep Learning Hand Posture Recognition (다채널 근전도 기반 딥러닝 동작 인식을 활용한 손 재활 훈련시스템 개발 및 사용성 평가)

  • Ahn, Sung Moo;Lee, Gun Hee;Kim, Se Jin;Bae, So Jeong;Lee, Hyun Ju;Oh, Do Chang;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.361-368
    • /
    • 2022
  • The purpose of this study was to develop a hand rehabilitation training system for hemiplegic patients. We also tried to find out five hand postures (WF: Wrist Flexion, WE: Wrist Extension, BG: Ball Grip, HG: Hook Grip, RE: Rest) in real-time using multi-channel EMG-based deep learning. We performed a pre-processing method that converts to Spider Chart image data for the classification of hand movement from five test subjects (total 1,500 data sets) using Convolution Neural Networks (CNN) deep learning with an 8-channel armband. As a result of this study, the recognition accuracy was 92% for WF, 94% for WE, 76% for BG, 82% for HG, and 88% for RE. Also, ten physical therapists participated for the usability evaluation. The questionnaire consisted of 7 items of acceptance, interest, and satisfaction, and the mean and standard deviation were calculated by dividing each into a 5-point scale. As a result, high scores were obtained in immersion and interest in game (4.6±0.43), convenience of the device (4.9±0.30), and satisfaction after treatment (4.1±0.48). On the other hand, Conformity of intention for treatment (3.90±0.49) was relatively low. This is thought to be because the game play may be difficult depending on the degree of spasticity of the hemiplegic patient, and compensation may occur in patient with weakened target muscles. Therefore, it is necessary to develop a rehabilitation program suitable for the degree of disability of the patient.

Comparison of metal wire reinforcement and glass fiber reinforcement in repaired maxillary complete denture (상악 총의치 정중 파절 수리 시 금속선 및 유리섬유의 보강효과 비교)

  • Lee, Jung-Ie;Jo, Jae-Young;Yun, Mi-Jung;Jeon, Young-Chan;Jeong, Chang-Mo;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.284-291
    • /
    • 2013
  • Purpose: This study compared fracture strength and fracture modes between metal wire reinforcement and glass fiber reinforcement in repaired maxillary complete denture. Materials and methods: In this study, fracture was reproduced on center of maxillary complete dentures and the denture was repaired with auto-polymerizing resin. The experimental groups (n = 10) were subjected to the following condition: without reinforcing material (control group), reinforcing with metal wire (W group), reinforcing with glass fiber pre-impregnated with light-curing resin (SES MESH, INNO Dental Co., Yeoncheon, Korea, G group). The fracture strength and fracture modes of a maxillary complete denture were tested using Instron test machine (Instron Co., Canton, MA, USA) at a 5.0 mm/min crosshead speed. The flexure load was applied to center of denture with a 20 mm diameter ball attachment. When fracture occurred, the fracture mode was classified based on fracture lines. The Kruskal-wallis test and the Mann-whitney U test were performed to identify statistical differences at ${\alpha}=.05$. Results: W group showed the highest value of fracture strength, there was no significant difference (P>.05) between control group and G group. Control group and W group showed anteroposterior fracture mainly, group W showed adhesive fracture of denture base and reinforcing material. Conclusion: In limitation of this study, the glass fiber did not improve the fracture strength of repaired maxillary complete denture, and adhesive failure was occurred along the lines of glass fiber.