• Title/Summary/Keyword: Ball velocity

Search Result 238, Processing Time 0.026 seconds

Effects of Bat Type on the Swing Motion of High School Baseball Athletes

  • Choi, Min Ra;Song, Sung Woo;Cha, Myung Joo;Shin, Min Young;Lee, Ki Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.87-92
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the factors affecting two kinds of bat swing behavior through kinematic analysis. Method: A total of 32 high school baseball players participated in this study. The ball was placed on the tee-ball in a position where the subject could easily swing and the standard bat swing was performed as quickly and as accurately as possible using aluminum bats and wooden bats. Results: The aluminum bat showed a rapid swing speed of about 1.79 m/sec compared to the wooden bat. The speed of the batted ball was found to be significantly greater for the aluminum bat than for the wooden bat. In addition, although the difference between the shoulder-pelvis rotation angle according to the type of bat was not indicated, there was a statistically significant difference between the aluminum bat and the wooden bat in terms of the rotational angular velocity. Conclusion: Even though the results can explain the difference between the bat swing speed and the speed of the batted ball depending on the bat's material, it is difficult to explain the difference depending on the type of bat at the shoulder-pelvis rotation angle. However, shoulder-pelvic rotation angular velocity appears to be higher for the aluminum bat, and the differences in the type of bat is considered to be related to the batting swing factor.

A three-dimensional kinematic analysis of the field goal kicking motion in American football (미식축구의 필드골(Field Goal) 킥(Kick)에 대한 운동학적 분석)

  • Ahn, Chan-Gyu;Kim, Ky-Hyung;Choi, Seung-Bang
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.139-153
    • /
    • 2003
  • The purpose of the study was to present technical guidance about the field goal kicking motion in American football for novices. For this purpose, kinematic analysis on the field goal kicking motion of two skilled players and two unskilled players was carried out. The following conclusions were made: 1. In comparison on the total elapsed time of the kicking, there were no significant differences between two groups. The progressing time from BP event to impact among experts group, however, took 0.141 second less than that of novices group. 2. The experts group showed right hip rotatier horizontally toward the targeted ball fixing left hip as the axis. On the other hand, the novices group didn't use the left hip as the axis in the kicking motion. 3. At the impact of kicking the ball, regarding with the distance of the ball and the supporting leg, the right and left distance of experts was 3.45cm longer than that of novices, the front and the rear distance of experts was 5.14cm shorter than novices. 4. At the impact, experts' initial velocity of the targeted ball was $5.27^m/s$ faster than novices', besides experts' incidence angular displacement was $3.78^{\circ}$ larger than novices'. 5. After BP event, experts showed a stable movement maintaining flexion and extension at left hip joint and knee joint. On the other hand, for novices, the angle of the left lower extremities became larger. 6. Experts showed the efficient flexion and extension of the hip joint and the knee joint during following procedure in the whole event of the kicking motion. At the BP event, the right knee joint angle of novices was $11.46^{\circ}$ larger than that of experts. However, the duration of the impact event and FT event among, novices had less extension of knee joint than experts. 7. At the 2nd phase, for both of the groups, the angular velocity of the knee joint drastically increased as the angular velocity of hip joint decreased. However, only novices showed the largest negative angular velocity at the impact.

Waterhammer in Transmission Pumping Station with Ball Valve (볼밸브를 사용한 송수펌프장에서의 수격현상)

  • Kim, Kyung-Yup;Kim, Joum-Bea
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1697-1702
    • /
    • 2004
  • The waterhammer has recently become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. When the pumps are started or stopped for the operation or tripped due to the power failure. the hydraulic transients occur as a result of the sudden change in velocity. In this paper, the field tests on the waterhammer by the startup, stoppage, and power failure of a centrifugal pump were carried out for Yongma transmission pumping station in Seoul. The experimental results were compared with that of the numerical calculations. in which results the procedure of controlled pump normal shut-down and the two-step closing mode of controlling the ball valve for pump emergency stop are proposed to reduce the pressure surge.

  • PDF

A Study on Characteristics of Impact Fracture in CFRP Laminate Plates (탄소섬유강화 복합재 적층판의 충격파괴 특성에 관한 연구)

  • Yang, I.Y.;Jung, J.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.38-46
    • /
    • 1995
  • In this paper, an experimental study on the effects of the impact damage and the perforation characteristic of CFRP laminates with different fiber stacking orientation and ply number was done through an observation of interrelations between the impact energy vs. transmitted energy and the impact energy vs. absorbed energy per unit volume. The velocities of the ball before or after impact are measured by the high-speed camera. And when CFRP laminates are subjected to tranverse impact by a steel ball(${\phi}10$), the delamination shapes generated by impact damage are observed by using SAM (Scanning acoustic Microscope).

  • PDF

Wave Propagation of Laminated Composites by the Hgih-Velocity Impact Experiment (고속 충격실험에 의한 적층 복합재의 파동전파에 관한 연구)

  • 김문생;김남식;박승범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1931-1939
    • /
    • 1993
  • The wave propagation characteristics of laminated composites subjected to a transverse high-velocity impact of a steel ball is investigated. For this purpose, high-velocity impact experiments were conducted to obtain the strain response histories, and a finite element analysis based on the higher-order shear deformation theory in conjunction with the static contact law is used. Test materials for investigation are glass/epoxy laminated composite materials with $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}]_{2s}$ and $[90^{\circ}/-45^{\circ}/90^{\circ}-45^{\circ}/90^{\circ}]_{2s}$ stacking sequences. As a result, the strain responses obtained from the experiments represented the wave propagation characteristics in the transversely impact, also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well.

Particle Morphology Change and Quantitative Input Energy Variation during Stirred Ball Milling Process by DEM Simulation on Various Experimental Conditions (교반볼밀을 이용한 밀링공정에서 각종실험조건에 따른 구리분말의 입자형상 변화 및 DEM 시뮬레이션에 의한 정량적 에너지 변화)

  • Bor, Amgalan;Batjargal, Uyanga;Jargalsaikhan, Battsetseg;Lee, Jehyun;Choi, Heekyu
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.148-158
    • /
    • 2018
  • This study investigated the effect of the grinding media of a ball mill under various conditions on the raw material of copper powder during the milling process with a simulation of the discrete element method. Using the simulation of the three-dimensional motion of the grinding media in the stirred ball mill, we researched the grinding mechanism to calculate the force, kinetic energy, and medium velocity of the grinding media. The grinding behavior of the copper powder was investigated by scanning electron microscopy. We found that the particle size increased with an increasing rotation speed and milling time, and the particle morphology of the copper powder became more of a plate type. Nevertheless, the particle morphology slightly depended on the different grinding media of the ball mill. Moreover, the simulation results showed that rotation speed and ball size increased with the force and energy.

A Study on the Goal Setting Method for Increasing the Holed Probability in Slope Putting Stroke on an Artificial Putting Surface

  • Park, Jin;Kim, Ji Hyeon;Jung, Jong Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.4
    • /
    • pp.269-278
    • /
    • 2017
  • Objective: The purpose of this study was to develop a goal setting method for increasing the probability of a holed in a side inclined putting stroke. Method: Three-dimensional video data was recorded at a frequency of 120 hz per second after synchronizing 19 infrared motion capture systems (Qualisys, Gothenburg, Sweden). Putting green used a polycarbonate plate ($1.2{\times}2.4{\times}0.01meter$) with coefficient of friction (${\mu}=0.062$) and a real curve of the actual hole. Results: The velocity ratio between the club and the ball was 1:1.6 under various ball speed conditions in this study. The overall position of the break is 1 m to 1.4 m from the point where the ball leaves. If there is a slope, the ball follows the target line by the straightening force, and when it reaches 1 m position, the straightening force decreases by 30~50% and reaches to the deviation (break) point which is severely influenced by the slope. From here, the ball is aimed in a direction other than the target, and the size is affected by the slope. Conclusion: If there is a side slope, the ball moves away from the straight line, and the larger the slope, the closer the break point is to the starting point of the ball. Therefore, it is necessary to calculate the degree of departure according to the slope carefully, and it is preferable that the slower the speed is, the more the influence of the slope becomes. It is preferable to use the center of the hole as a reference when calculating the departure.

A study on the prediction of cutting force in ball-end milling process (볼 엔드 밀에 의한 곡면가공의 절삭력 예측에 관한 연구)

  • 박희덕;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.433-442
    • /
    • 1989
  • Owing to the development of CNC machine tools and automatic programing software, the milling process with ball-end mill has become the most widely used process where three-dimensional precision machining is important. In this study, the ball-end milling process has been analyzed and a cutting force model has been developed to predict the cutting force acting on the ball-end mill on given machining conditions. The development of the model is based on the analysis of geometry of a ball-end mill an the oblique cutting process. The cutting edges of ball-end mills are considered as a series of infinitesimal elements and the geometry of the cutting edge element each cutting edge element is straight. The oblique cutting process in the small cutting edge element has been analyzed as orthogonal cutting process in the plane containing the cutting velocity vector and chip-flow vector. Hence, with the orthogonal cutting data obtained from orthogonal turning test, the cutting forces can be predicted through the model. The predicted cutting forces has shown a fairly good agreement with the test results in various plane cutting conditions.

A Design of Impact Control Device for High-speed Mounting of Micro-Chips (소형 칩의 고속 표면실장을 위한 충격력 제어 장치의 설계)

  • 이덕영;김병만;심재홍;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.121-121
    • /
    • 2000
  • This paper presents a design of macro-micro system for high-speed mounting of micro-chips. A macro motion device is driven by DC servomotor and ball screw mechanism. To obtain fast response, a micro motion device utilizes a precision elector magnetic actuator In order to reduce peak impact force, We evaluate the design parameters that have an effect on it. And a characteristic of response is simulated using PID controller in velocity and force control.

  • PDF

An Experimental Study of Operating Characteristics on Fouling Auto Removal Apparatus of Multi Pass Type Heat Exchanger using Ejector (이젝터를 이용한 다관식 열교환기 파울링 자동제거장치의 구동특성에 관한 실험적 연구)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.63-69
    • /
    • 2009
  • The experiment was performed to check operating characteristics of fouling auto removal apparatus for multi pass type heat exchanger using ejector. The results showed as following. The ejector suction flow rate increased with the head of operating pump of ejector. Proper suction flow rate showed $7.2{\sim}10.2m^3/h$ for ball collection in case of pump head 35~50m. The head of ejector outlet pipe is below 4.1m in case of 40m, the head of operating pump of ejector to confirm ejector suction flow rate 8.4m3/h. Lattice space of ball separator is allowed 6~10.3mm in ranges of ball diameter are 15~25mm and when mass flow of cooling water is 3.0m/sec. Average of passing time of balls is 1.2~2.8sec depend on the velocity of flow and the size of balls.

  • PDF