• Title/Summary/Keyword: Ball Joint

Search Result 264, Processing Time 0.035 seconds

Effect of Surface Finish on Mechanical and Electrical Properties of Sn-3.5Ag Ball Grid Array (BGA) Solder Joint with Multiple Reflow (Sn-3.5Ag BGA 패키지의 기계적·전기적 특성에 미치는 PCB표면 처리)

  • Sung, Ji-Yoon;Pyo, Sung-Eun;Koo, Ja-Myeong;Yoon, Jeong-Won;Shin, Young-Eui;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.261-266
    • /
    • 2009
  • The mechanical and electrical properties of ball grid array (BGA) solder joints were measured, consisting of Sn-3.5Ag, with organic solderability preservative (OSP)-finished Cu pads and Electroless Nickel/Immersion Gold (ENIG) surface finishes. The mechanical properties were measured by die shear test. When ENIG PCB was upper joint and OSP PCB was lower joint, the highest shear force showed at the third reflow. When OSP PCB was upper joint and ENIG PCB was lower joint, the highest shear force showed at the forth reflow. For both joints, after the die shear results reached the highest shear force, shear force decreased as a function of increasing reflow number. Electrical property of the solder joint decreased with the function of increasing reflow number. The scanning electron microscope results show that the IMC thickness at the bonding interface gets thicker while the number of reflow increases.

3-D Kinematics Comparative Analysis of Penalty Kick between Novice and Expert Soccer Players (축구 페널티킥에서 초보자와 숙련자의 3차원 운동학적 비교)

  • Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.13-24
    • /
    • 2005
  • The purpose of this study was to compare kinematic data between experts and novices, and identify difference kinematic parameters changing direction to kick in penalty kick of soccer play. Novice subjects were 5 high school students Who has never been experienced a soccer player, and expert subjects were 5 competitive high school soccer players. The 3-d angle was calculated by Euler's Angle by inertial axis and local axis with three-dimensional cinematography. Kinematic parameters in this study consisted of angles of knee joints, hip joints, lower trunk and upper trunk when the support foot was contacted on ground and kicking foot impacted the ball. The difference of angle of knee joints in the flexion/extension was insignificantly showed below $4{\sim}9^{\circ}$ in groups and directions of ball at the time of support and impact. But the difference of angle of hip joint was significant in groups and directions of ball at the time of support and impact. Specially the right hip joint of experts were more flexed about $12^{\circ}$($43.99{\pm}6.17^{\circ}$ at left side, $31.87{\pm}4.49^{\circ}$ at right side), less abducted about $10^{\circ}$ ($-31.27{\pm}4.49^{\circ}$ at left side, $-41.97{\pm}6.67^{\circ}$ at right side) at impact when they kicked a ball to the left side of goalpost. The difference of amplitude angle in the trunk was significantly shown at upper trunk not lower trunk. The upper trunk was external rotated about $30^{\circ}$ (novice' angle was $-16.3{\pm}17.08^{\circ}$, expert's angle was $-43.73{\pm}12.79^{\circ}$) at impact. Therefore the significant difference of kinematic characteristics could be found at the right hip joint and the upper trunk at penalty kick depending on the direction of kicking.

A Study on Life Estimation of a Forging Die (단조 금형의 수명 평가에 관한 연구)

  • Choi, C.H.;Kim, Y.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.479-487
    • /
    • 2007
  • Die life is generally estimated taking failure life and wear amount into consideration. In this study, the forging die life was investigated considering both of these two factors. The fatigue life prediction for the die was performed using the stress-life method, i.e. Goodman's and Gerber's equations. The Archard's wear model was used in the wear life simulation. These die life prediction techniques were applied to the die used in the forging process of the socket ball joint of a transportation system. A rigid-plastic finite element analysis for the die forging process of the socket ball was carried out and also the elastic stress analysis for the die set was performed in order to get basic data for the die fatigue life prediction. The wear volume of the die was measured using a 3-dimensional measurement apparatus. The simulation results were relatively in good agreement with the experimental measurements.

Development of Revolute joint Robot Manipulator with closed-chain structure (폐체인 구조의 다관절 로봇 매니플레이터의 개발)

  • 오정민;백창열;최형식;김명훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.540-543
    • /
    • 2002
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To overcome this, we proposed and constructed a new type of the robot actuator which is four-bar-link mechanism driven by the ball screw. We developed a new type of a revolute-jointed robot manipulator composed of four axes. The base axis is actuated with conventional speed reducer, but the others are actuated by the proposed actuators. We analyzed the mechanism of the actuators of the robot joints, and developed the dynamics model. The dynamics are expressed in the joint coordinates, and then they are mapped into the sliding coordinates of the ball screw. The structure specifications of the manipulator shown.

  • PDF

A three-dimensional kinematic analysis of the field goal kicking motion in American football (미식축구의 필드골(Field Goal) 킥(Kick)에 대한 운동학적 분석)

  • Ahn, Chan-Gyu;Kim, Ky-Hyung;Choi, Seung-Bang
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.139-153
    • /
    • 2003
  • The purpose of the study was to present technical guidance about the field goal kicking motion in American football for novices. For this purpose, kinematic analysis on the field goal kicking motion of two skilled players and two unskilled players was carried out. The following conclusions were made: 1. In comparison on the total elapsed time of the kicking, there were no significant differences between two groups. The progressing time from BP event to impact among experts group, however, took 0.141 second less than that of novices group. 2. The experts group showed right hip rotatier horizontally toward the targeted ball fixing left hip as the axis. On the other hand, the novices group didn't use the left hip as the axis in the kicking motion. 3. At the impact of kicking the ball, regarding with the distance of the ball and the supporting leg, the right and left distance of experts was 3.45cm longer than that of novices, the front and the rear distance of experts was 5.14cm shorter than novices. 4. At the impact, experts' initial velocity of the targeted ball was $5.27^m/s$ faster than novices', besides experts' incidence angular displacement was $3.78^{\circ}$ larger than novices'. 5. After BP event, experts showed a stable movement maintaining flexion and extension at left hip joint and knee joint. On the other hand, for novices, the angle of the left lower extremities became larger. 6. Experts showed the efficient flexion and extension of the hip joint and the knee joint during following procedure in the whole event of the kicking motion. At the BP event, the right knee joint angle of novices was $11.46^{\circ}$ larger than that of experts. However, the duration of the impact event and FT event among, novices had less extension of knee joint than experts. 7. At the 2nd phase, for both of the groups, the angular velocity of the knee joint drastically increased as the angular velocity of hip joint decreased. However, only novices showed the largest negative angular velocity at the impact.

FEM Analysis of Rubber Cover for Automotive Parts (FEM에 의한 자동차부품용 고무커버에 관한 해석)

  • 김상우;김인관;강태호;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.778-781
    • /
    • 2002
  • Durability of rubber dust cover in the ball joint for automotive suspension parts were analyzed by FEM and compared with experimental data. Upper open area of ball joint is sealed by dust cover for preventing outflow of the lubricating oil and intrusion of send, dust, water, etc. This rubber cover undergoes repeated loadings such as tension and compression while the car is running. Analysis about rubber material needs to consider every kinds of nonlinearities arise in finite element analysis, which are geometric nonlinearity due to large displacement and small strain, materially nonlinearity and nonlinear boundary condition such as contact. So in the study, the deformation behavior of dust cover was analysed by using the commercial finite element program MARC. This program could solve these kinds of nonlinear analysis accurately. Finite element model of dust cover is considered as 3-dimensional half model based on 2-dimensional axisymmetric model. Material property of rubber was modeled by Ogden model and input data for calculation takes form uniaxial tension test of rubber specimen, The final object of the study is obtaining the design specification of dust covers and the result of analysis should be a useful data to design of rubber

  • PDF

Development of Machine Vision System and Dimensional Analysis of the Automobile Front-Chassis-Module

  • Lee, Dong-Mok;Yang, Seung-Han;Lee, Sang-Ryong;Lee, Young-Moon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2209-2215
    • /
    • 2004
  • In the present research work, an automated machine vision system and a new algorithm to interpret the inspection data has been developed. In the past, the control of tolerance of front-chassis-module was done manually. In the present work a machine vision system and required algorithm was developed to carryout dimensional evaluation automatically. The present system is used to verify whether the automobile front-chassis-module is within the tolerance limit or not. The directional ability parameters related with front-chassis-module such as camber, caster, toe and king-pin angle are also determined using the present algorithm. The above mentioned parameters are evaluated by the pose of interlinks in the assembly of an automobile front-chassis-module. The location of ball-joint center is important factor to determine these parameters. A method to determine the location of ball-joint center using geometric features is also suggested in this paper. In the present work a 3-D best fitting method is used for determining the relationship between nominal design coordinate system and the corresponding feature coordinate system.

A Study on the Non-Linear Static Analysis for L-type Front Lower Control Arm (L 형 전륜 로어 암의 대하중 강도 해석 기법 연구)

  • Lee, Soon-Wook;Koo, Ja-Suk;Song, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.453-458
    • /
    • 2008
  • Under driving condition, A vehicle experiences various kinds of loads, which brings on the buckling and fracture of suspension systems. Lower control arm (LCA), which consists of 2 bush joints and 1 ball joint connection, is the one of the most important parts in the suspension system. The bush joints absorb the impact load and reduce the vibration from the road. When analyzing the LCA behavior, it is important to understand the material properties and boundary conditions of bushing systems correctly, because of the nonlinearity characteristics of the rubber. In this paper, in order to predict the large scale deformation of the LCA more precisely, three factors are newly suggested, that is, coupling of bush stiffness between translation and rotation, bush extraction force and maximum rotation angle of ball joint. LCA stiffness is estimated by CAE and component test. Analysis and test results are almost same and the validity of considering three factors in LCA analysis is verified.

  • PDF

Synchronization Error-based Control Approach for an Industrial High-speed Parallel Robot (다축 동기 제어 방법 기반의 산업용 고속 병렬로봇 제어)

  • Do, Hyun Min;Kim, Byung In;Park, Chanhun;Kyung, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.354-361
    • /
    • 2016
  • Parallel robots are usually used for performing pick-and-place motion to increase productivity in high-speed environments. The present study proposes a high-speed parallel robot and a control approach to improve the tracking performance for the purpose of handling a solar cell. However, the target processes are not limited to the solar cell-handling field. Therefore, a delta-type parallel manipulator is designed, and a ball joint structure is specifically proposed to increase the allowed angle that would meet the required workspace. A control algorithm considering the synchronization between multiple joints in a closed-chain mechanism is also suggested to improve the tracking performance, where the tracking and synchronization errors are simultaneously considered. In addition, a prototype machine with the proposed ball joint is implemented. A satisfactory tracking performance is achieved by applying the proposed control algorithm, with a cycle time of 0.3 s for a 0.1 kg payload.