• 제목/요약/키워드: Balancing control

검색결과 639건 처리시간 0.019초

고속 회전체의 능동 밸런싱에 관한 연구 (I): 능동 밸런싱 장치의 개발 (A Study on the Active Balancing for High-Speed Rotors (I): Development of the Active Balancing System)

  • 김종수;박현규;이수훈
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.140-146
    • /
    • 2002
  • High speed rotating machines can be very sensitive to rotating mass unbalance that is a major source of harmful vibration for many types of rotating machinery. So, the balancing procedure is needed for all high-speed rotating system. To save the time and cost of off-line balancing, many researchers have developed the on-line balancing devices and methods. In this paper, an active balancing device, which is an electro-magnetic type, is developed and the active balancing algorithm using influence coefficient method is also proposed. The active balancing experiment for flexible rotors during operation is performed by an active balancing device. As a result, controlled unbalance responses are below the vibration limit at all rotating speed ranges with critical speed.

비 모델 외바퀴 로봇의 제어 (Control of a Unicycle Robot using a Non-model based Controller)

  • 안재원;김민규;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.537-542
    • /
    • 2014
  • This paper proposes a control system to keep the balance of a unicycle robot. The robot consists of the disk and wheel, for balancing and driving respectively, and the tile angle is measured and used for balancing by the IMU sensor. A PID controller is designed based on a non-model based algorithm to prove that it is possible to control the unicycle robot without any approximated linear system model such as the sliding mode control algorithm. The PID controller has the advantage that it is simple to design the controller and it does not require an unnecessary complex formula. In this paper, assuming that the pitch and roll axis are dynamically decoupled, each of the two controllers are designed separately. A reaction wheel pendulum method is used for the control of the roll axis, that is, for balancing and an inverted pendulum concept is used for the control of the pitch axis. To confirm the performance of the proposed controllers using MATLAB Simulink, the dynamic equations of the robot are derived.

반도체 칩 캡슐화 공정에 있어서 와이어 스윕(wire sweep) 최소화에 관한 연구 (Reduction of Wire Sweep during Chip Encapsulation by Runner Balancing and Ram Control)

  • 한세진;허용정
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.13-21
    • /
    • 1996
  • In this paper, methods to reduce wire sweep during the chip-encapsulation process have been studide. Two methods have been tried for this purpose, namely runner balancing and ram velocity control. Runner balancing has been achieved automatically by using a computer program. Ram-velocity control has been achieved using empirical rules and results from a flow simulation of the encapsulation process. A mold which has 12 cavities for chip has been used as a case study. The simulation results show that the wire sweep obtained from the optimal process condition is about 1/5 of that from initial, unoptimized condition.

  • PDF

무게 변화에 따른 차륜형 밸런싱 로봇의 제어기 설계 및 실험연구 (Experimental Studies of Controller Design for a Car-like Balancing Robot with a Variable Mass)

  • 김현욱;정슬
    • 한국지능시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.469-475
    • /
    • 2010
  • 본 논문에서는 두 바퀴로 구동되는 역진자기반의 1인승 차량의 안정적인 균형을 위해 제어기를 설계하였다. 탑승자의 몸무게에 따라 전체 질량이 달라지므로 그에 따른 PID 제어기의 이득값을 실험적으로 구하였다. 이 때 탑승자의 몸무게에 따라 무게 중심이 달라지게 되는데, 이는 밸런싱 각도에 영향을 미치게 된다. 따라서, 안정적인 균형을 이루기 위해서는 몸무게에 따른 목표 밸런싱 각도를 수정하여 제어해야 한다. 다양한 탑승자의 몸무게를 측정하기 위해 차량에 체중계를 달고 측정된 체중 데이터를 컴퓨터로 전송하여 제어기에 적용하였다. 다양한 실험으로 얻은 정보를 사용하여 제어기의 게인 스케줄링을 통하여 보다 안정적인 균형을 유지할 수 있었다.

An Optimized Control Method Based on Dual Three-Level Inverters for Open-end Winding Induction Motor Drives

  • Wu, Di;Su, Liang-Cheng;Wu, Xiao-Jie;Zhao, Guo-Dong
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.315-323
    • /
    • 2014
  • An optimized space vector pulse width modulation (SVPWM) method with common mode voltage elimination and neutral point potential balancing is proposed for an open-end winding induction motor. The motor is fed from both of the ends with two neutral point clamped (NPC) three-level inverters. In order to eliminate the common mode voltage of the motor ends and balance the neutral point potential of the DC link, only zero common mode voltage vectors are used and a balancing control factor is gained from calculation in the strategy. In order to improve the harmonic characteristics of the output voltages and currents, the balancing control factor is regulated properly and the theoretical analysis is provided. Simulation and experimental results show that by adopting the proposed method, the common mode voltage can be completely eliminated, the neutral point potential can be accurately balanced and the harmonic performance for the output voltages and currents can be effectively improved.

Cell Balancing Method in Flyback Converter without Cell Selection Switch of Multi-Winding Transformer

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.367-376
    • /
    • 2016
  • This paper presents a cell balancing method for a single switch flyback converter with a multi-winding transformer. The conventional method using a flyback converter with a multi-winding transformer is simple and easy to control, but the voltage of each secondary winding coil might be non-uniform because of the unequal effective turn-ratio. In particular, it is difficult to control the non-uniform effect using turn-ratios because secondary coil has a limited number of turns. The non-uniform secondary voltages disturb the cell balancing procedure and induce an unbalance in cell voltages. Individual cell control by adding a switch for each cell can reduce the undesirable effect. However, the circuit becomes bulky, resulting in additional loss. The proposed method here uses the conventional flyback converter with an adjustment made to the output filters of the cells, instead of the additional switch. The magnitude of voltage applied to a particular cell can be reduced or increased according to the adjusted filter and the selected switching frequency. An analysis of the conventional converter configuration and the filter design method reveals the possibility of adequate cell balancing control without any additional switch on the secondary side.

Effect of Masticating Chewing Gum on the Balance of Stroke Patients

  • Gim, Mina;Choi, Junghyun
    • 국제물리치료학회지
    • /
    • 제12권2호
    • /
    • pp.2370-2374
    • /
    • 2021
  • Background: Masticating is an activity that is free from temporal or spatial constraints, with an advantage that it can be combined easily with other treatment methods. While several studies have reported a positive effect of the intervention of chewing using the jaw on postural stability, only a few studies were conducted on stroke patients. Objectives: To investigated the effects of masticating chewing gum on the static and dynamic balancing of stroke patients. Design: Randomized cross-over study design. Methods: Nineteen stroke patients were randomly assigned to the chewing group or control group. BT4 was used to measure the static and dynamic balancing abilities. Pre-test measurements were taken before mastication of chewing gum, and post-test measurements were taken after 2 days. The stroke patients in the chewing group were guided to sit on a chair and chew gum for 3 min, and their balancing abilities were simultaneously measured. The balancing abilities of the control group patients were measured while they sat at rest without masticating chewing gum. Results: The chewing group showed significant increases in the measures of static balance (i.e., C90 area, trace length, X mean, and Y mean). In the between-group comparison, the measures of static balance were significantly higher in the chewing group than in the control group. Conclusion: These findings suggest that masticating chewing gum enhanced the static balancing ability of stroke patients. Thus, gum chewing should be considered a viable clinical intervention to control posture in stroke patients.

관절형 로보트에 있어서의 미지부하에 대한 링크의 균형화와 부하질량의 추정 (Link balancing and identification for an unknown payload in an articulated robot)

  • 임태균;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.534-539
    • /
    • 1988
  • This paper presents a method to balance the links of an articulated robot for an unknown payload using an automatic balancing mechanism. The balancing masses are controlled to move in their appropriate locations so that the joint torques of the links are eliminated. After balancing the mass of the payload is obtained from the balancing conditions. Based upon a series of simulation studies some results are discussed.

  • PDF

역진자 기반 공 로봇의 균형제어 (Balancing Control of a Ball Robot Based on an Inverted Pendulum)

  • 강석원;박찬익;변규호;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.834-838
    • /
    • 2013
  • This paper proposes a new ball robot which has a four axis structure and four motors that directly actuate the ball to move or to maintain the balance of the robot. For the Balancing control, it is possible to use non-model-based controller to control simply without complex formula. All the gains of the controller are heuristically adjusted during the experiments. The tilt angle is measured by IMU sensors, which is used to generate the control input of the roll and pitch controller to make the tilt angle zero. The performance of the designed control system has been verified through the real experiments with the developed ball robot.

공작기계 주축시스템의 능동 밸런싱 장치에 관한 연구 (A Study on the Active Balancing Device for Spindle System of Machine Tools)

  • 문종덕;김봉석;김도형;이수훈
    • 한국소음진동공학회논문집
    • /
    • 제15권3호
    • /
    • pp.297-305
    • /
    • 2005
  • A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reducevibration in rotating system is certainly needed for all high-speed spindles. An active balancing program using influence coefficient method and an active balancing device of an electro-magnetic type have been applied to the developed high-speed spindle system in this study. A reliable gain-scheduling control using influence coefficients of the reference model although system characteristics are changed is applied. The stability of reference influence coefficients is verified by frequency response functions. The active balancing experiment for the developed high-speed spindle during operation is well performed with an active balancing program and device. As a result, controlled unbalance responses are below the vibration limit at all rotating speed ranges with critical speed.