• Title/Summary/Keyword: Balance of Plant

Search Result 428, Processing Time 0.034 seconds

Effects of Renewal Pattern of Recycled Nutrient Solution on the Ion Balance in Nutrient Solutions and Root Media and the Growth and Ion Uptake of Paprika (Capsicum annuum L.) in Closed Soilless Cultures

  • Ko, Myat Thaint;Ahn, Tae In;Shin, Jong Hwa;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.463-472
    • /
    • 2014
  • Ion imbalance in recycled nutrient solutions is caused by selective ion uptake of plants, which occurs at different rates in different growth stages. The objectives of this study were to investigate the ion balances in both recycled nutrient solutions and rockwool media using different renewal patterns for the nutrient solutions, and to analyze the subsequent effects on uptake of water and nutrients. Over 12 weeks of paprika cultivation, two different renewal patterns (week units) of 6-4-2 and 8-2-2 weeks were compared with a constant renewal pattern of 4-4-4 weeks (control). The nutrient solution in the reservoir tank was constantly maintained at EC $2.5dS{\cdot}m^{-1}$ and pH 5.5-6.5. The changes in the ion balance with the 4-4-4 week pattern were smaller than those with the other treatments. In the early growth stage, however, the ion balances similarly changed among all treatments. Greater changes were subsequently observed for the 6-4-2 week pattern. Although fruit yield and shoot fresh weight of paprika were the lowest with 6-4-2 renewal pattern, no significant differences were observed. Our results indicate that renewal intervals can be extended in consideration of growth stage for more efficient and practical operations in closed soilless cultures.

Application of ASM and PHOENICS for Optimal Operation of Wastewater Treatment Plant (하수처리장 운영의 최적화를 위한 ASM, PHOENICS의 적용)

  • Kim, Joon Hyun;Han, Mi-Duck;Han, Yung Han
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.73-82
    • /
    • 2000
  • This study was implemented to find an optimal model for wastewater treatment processes using PHOENICS(Parabolic, hyperbolic or Elliptic Numerical Integration Code Series) and ASM(Activated Sludge Model). PHOENICS is a general software based upon the laws of physics and chemistry which govern the motion of fluids, the stresses and strains in solids, heat flow, diffusion, and chemical reaction. The wastewater flow and removal efficiency of particle in two phase system of a grit chamber in wastewater treatment plant were analyzed to inquire the predictive aspect of the operational model. ASM was developed for a biokinetic model based upon material balance in complex activated sludge systems, which can demonstrate dynamic and spatial behavior of biological treatment system. This model was applied to aeration tank and settling chamber in Choonchun city, and the modeling result shows dynamic transport in aeration tank. PHOENCS and ASM could be contributed for the optimal operation of wastewater treatment plant.

  • PDF

Process Modeling of the Coal-firing Power Plant as a Testbed for the Improvement of the System and Equipment (화력발전 시스템 및 설비 개선 실증을 위한 열물질정산 공정모델 개발)

  • Ahn, Hyungjun;Choi, Seukcheun;Lee, Youngjae;Kim, Beom Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.44-54
    • /
    • 2018
  • Heat and mass balance process modeling has been conducted for a coal-firing power plant to be used as a testbed facility for development of various plant systems and equipment. As the material and design of the boiler tube bundle and fuel conversion to the biomass have become major concerns, the process modeling is required to incorporate those features in its calculation. The simulation cases for two different generation load show the satisfying results compared to the operational data from the actual system. Based on the established process conditions, the hypothetical case using wood pellet has also been simulated. Additional calculations for the tube bundle has been conducted regarding the changes in the tube material and design.

Comparison of Land Surface Temperatures from Near-surface Measurement and Satellite-based Product

  • Ryu, Jae-Hyun;Jeong, Hoejeong;Choi, Seonwoong;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.609-616
    • /
    • 2019
  • Land surface temperature ($T_s$) is a critical variable for understanding the surface energy exchange between land and atmosphere. Using the data measured from micrometeorological flux towers, three types of $T_s$, obtained using a thermal-infrared radiometer (IRT), a net radiometer, and an equation for sensible heat flux, were compared. The $T_s$ estimated using the net radiometer was highly correlated with the $T_s$ obtained from the IRT. Both values acceptably fit the $T_s$ from the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer)satellite. These results will enhance the measurement of land surface temperatures at various scales. Further, they are useful for understanding land surface energy partitioning to evaluate and develop land surface models and algorithms for satellite remote sensing products associated with surface thermal conditions.

Effects of Dietary Plant Oils on the Cholesterol Level and on the Composition of Fatty Acids in Hen Egg Yolks (산란계 사료에 첨가된 식물유지류가 난황의 콜레스테롤 농도 및 지방산 조성에 미치는 영향)

  • 오홍록;관야도광
    • Korean Journal of Poultry Science
    • /
    • v.21 no.3
    • /
    • pp.183-193
    • /
    • 1994
  • White Leghorn hens were fed a commercial formula feeds as a basal diet, which was supplemented with 3 types of plant oil safflower, evening primrose and pine seed, at the 10% level for 3 weeks. No significant changes was found between the basal diet and the oil feeding trials in the egg yolk cholesterol content, the laying rate, the egg weight, and the yolk weight, except the feed intake. In the fatty acid composition of the egg yolk lipid, however, the plant oil feedings to hens resulted in considerable increase of $C_{18:2}$ acid with a simultaneous decrease of $C_{18:2}$ acid ,and, consequently, followed by the improvement of balance with P /S and P /M /S ratio close to 1.0 and 1:1:1, which is known a desirable ratio for human health in lipid nutrition, respectively.

  • PDF

Web-Based On-Line Thermal Performance Analysis System for Turbine Cycle of Nuclear Power Plant (온라인 웹기반 원전 터빈 사이클 열성능 분석 시스템)

  • Choi KiSang;Choi KwangHee;Ji MoonHak;Hong SeungYeol;Kim SeongKun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.409-416
    • /
    • 2005
  • We need to develop a on-line thermal performance analysis system for nuclear power plant to determine performance status and heat rate of turbine cycle. We have developed PERUPS(PERformance Upgrade System) to aid the effective performance analysis of turbine cycle. Procedures of performance calculation are improved using several adaptations from standard calculation algorithms based on PTC(Performance Test Code). Robustness in the on-line performance analysis is increased by verification & validation scheme for measured input data. The system also provides useful web interfaces for performance analysis such as graphic heat balance of turbine cycle and components, turbine expansion lines, automatic generation of analysis report. The system was successfully applied for YongGwang nuclear plant unit #3,4.

Exergetic and Thermoeconomic Analysis of Steam Power Plant (스팀 동력 플랜트의 엑서지 및 열경제학적 해석)

  • Kim, Duck-Jin;Jung, Jung-Yeul;Kwak, Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.76-83
    • /
    • 2003
  • Exergetic and thermoeconomic analyses were performed fer a 137-MW steam power plant. In these analyses, mass and energy conservation laws were applied to each component of the system. Quantitative balance of the exergy and exergetic cost for each component, and for the whole system was carefully considered. The exergo-economic model, which represented the productive structure of the system was used to visualize the cost formation process and the productive interaction between components. The computer program developed in this study can determine production costs of power plants, such as gas-and steam-turbines plants and gas-turbine cogeneration plants. The program can also be used to study plant characteristics, namely, thermodynamic performance and sensitivity to changes in process and/or component design variables.

Capture and Reduction Technology of Greenhouse Gas Using Membrane from Anaerobic Digester Gas (분리막을 이용한 혐기성 소화가스로부터 온실가스 회수저감 기술)

  • Hwang, Cheol-Won;Jeong, Chang-Hun
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1233-1241
    • /
    • 2011
  • The main objective of this experimental investigation was $CH_4$ recovery from biogas generated in municipal and wastewater treatment plant. The polysulfone hollow fiber membrane was prepared in order to investigate the permeation properties of $CH_4$ and $CO_2$. Permeability of $CO_2$ in Polysulfone membrane was 11-fold higher than of $CH_4$ gas. A membrane pilot plant for upgrading biogas was constructed and operated at a municipal wastewater treatment plant. The raw biogas contained 66 ~ 68 Vol % $CH_4$, the balance being mainly $CO_2$. The effect of the operating pressure of feed and permeate side and feed flowrate on $CH_4$ recovery concentration and efficiency were investigated with double stage membrane pilot plant. The $CH_4$ concentration in the retentate stream was raised in these tests to 93 Vol % $CH_4$.

Large eddy simulation of turbulent boundary layer effects on stratified fluids in a rotating conical container

  • Lee, Sang-Ki;Bae, Jun-Hong;Hwang, Eyl-Seon;M. Sadasivam
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.75-80
    • /
    • 2000
  • We revisit the arrested Ekman boundary layer problem, using a fully non-linear numerical model with the subgrid dissipation modeled by the large eddy simulation method (LES). The main objective of this study is to find out whether the dynamic balance of the arrested Ekman boundary layer explained by MacCready and Rhines (1991) is valid for high Reynolds number. The model solution indicates that for high Reynolds number and low Richardson number flows, the density anomaly diffusion by near-wall turbulent action may become intense enough to homogenize completely the density structure within the boundary layer, in the direction perpendicular to the sloping wall. Then the buoyancy effect becomes negligible allowing a near-equilibrium Ekman boundary layer flow to persist for a long period.

  • PDF

Development of a 200 W Portable PEM Fuel Cell System (200 W급 휴대용 고분자 전해질막 연료전지 시스템 개발)

  • Han, Hun-Sik;Kim, Yun-Ho;Cho, Chang-Hwan;Kim, Seo-Young;Hyun, Jae-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.91-101
    • /
    • 2012
  • A 200 W portable polymer electrolyte membrane fuel cell (PEMFC) system is developed. The PEMFC system consists of an air-cooled fuel cell stack module, a fuel supply subsystem, a power management subsystem, and a control electronics subsystem. The control logic is designed for the stable system operation. The system-level performance evaluation discloses that the present PEMFC system provides a rated power output of 200.5 W at 13.4 V with the maximum balance-of-plant (BOP) efficiency of 72%, and maximum system efficiency based on lower heating value (LHV) is 37% at 120.7 W system power output.