Browse > Article
http://dx.doi.org/10.6110/KJACR.2012.24.2.091

Development of a 200 W Portable PEM Fuel Cell System  

Han, Hun-Sik (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Kim, Yun-Ho (Department of Mechanical and Information Engineering, University of Seoul)
Cho, Chang-Hwan (CAC Laboratory, LG Electronics)
Kim, Seo-Young (Energy Mechanics Center, Korea Institute of Science and Technology)
Hyun, Jae-Min (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Korean Journal of Air-Conditioning and Refrigeration Engineering / v.24, no.2, 2012 , pp. 91-101 More about this Journal
Abstract
A 200 W portable polymer electrolyte membrane fuel cell (PEMFC) system is developed. The PEMFC system consists of an air-cooled fuel cell stack module, a fuel supply subsystem, a power management subsystem, and a control electronics subsystem. The control logic is designed for the stable system operation. The system-level performance evaluation discloses that the present PEMFC system provides a rated power output of 200.5 W at 13.4 V with the maximum balance-of-plant (BOP) efficiency of 72%, and maximum system efficiency based on lower heating value (LHV) is 37% at 120.7 W system power output.
Keywords
Polymer electrolyte membrane fuel cell; System; Balance-of-plant; Efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Santa Rosa, D. T., Pinto, D. G., Silva, V. S., Silva, R. A., and Rangel, C. M., 2007, High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions, Int. J. Hydrogen Energy, Vol. 32, pp. 4350- 4357.   DOI   ScienceOn
2 Wu, J., Galli, S., Lagana, I., Pozio, A., Monteleone, G., Yuan, X. Z., Martin, J., and Wang, H., 2009, An air-cooled proton exchange membrane fuel cell with combined oxidant and coolant flow, J. Power Sources, Vol. 188, pp. 199-204.   DOI   ScienceOn
3 Nguyen, T. V. and Knobbe, M. W., 2003, A liquid water management strategy for PEM fuel cell stacks, J. Power Sources, Vol. 114, pp. 70-79.   DOI   ScienceOn
4 Jossen, A., Garche, J., Doering, H., Goetz, M., Knaupp, W., and Joerissen, L., 2005, Hybrid systems with lead-acid battery and protonexchange membrane fuel cell, J. Power Sources, Vol. 144, pp. 395-401.   DOI   ScienceOn
5 Tuber, K., Zobel, M., Schmidt, H., and Hebling, C., 2003, A polymer electrolyte membrane fuel cell system for powering portable computers, J. Power Sources, Vol. 122, pp. 1-8.   DOI   ScienceOn
6 OʼHayre, R., Cha, S. W., Colella, W., and Prinz, F. B., 2006, Fuel Cell Fundamentals, John Wiley and Sons Inc., New York.
7 Larminie, A., 2003, Fuel Cell Systems Explained, second ed., John Wiley and Sons Ltd., Chichester.
8 Chu, D., Jiang, R., Gradner, K., Jacobs, R., Schmidt, J., Quakenbush, T., and Stephens, J., 2001, Polymer electrolyte membrane fuel cells for communication applications, J. Power Sources, Vol. 96, pp. 174-178.   DOI   ScienceOn
9 Oszcipok, M., Zedda, M., Hesselmann, J., Huppmann, M., Wodrich, M., Junghardt, M., and Hebling, C., 2006, Portable proton exchange membrane fuel-cell systems for outdoor applications, J. Power Sources, Vol. 157, pp. 666-673.   DOI   ScienceOn
10 Chang, H. P., Chou, C. L., Chen, Y. S., Hou, T. I., and Weng, B. J., 2007, The design and cost analysis of a portable PEMFC UPS system, Int. J. Hydrogen Energy, Vol. 32, pp. 316-322.   DOI   ScienceOn