• Title/Summary/Keyword: Balance of Plant

Search Result 429, Processing Time 0.036 seconds

Removal of RDX using Lab-scale Plug Flow Constructed Wetlands Planted with Miscanthus sacchariflorus (Maxim.) Benth (물억새를 식재한 플러그 흐름 습지에서의 RDX 제거동역학)

  • Lee, Ahreum;Kim, Bumjoon;Park, Jieun;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.85-94
    • /
    • 2015
  • RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) is the most important explosive contaminant, both in concentration and in frequency, at military shooting ranges in which green technologies such as phytoremediation or constructed wetlands are the best option for mitigation of explosive compounds discharge to the environment. A study was conducted with two identical lab-scale plug flow constructed wetlands planted with Amur silver grass to treat water artificially contaminated with 40 mg/L of toxic explosive compound, RDX. The reactor was inoculated with or without RDX degrading mixed culture to evaluate plant-microorganism interactions in RDX removal, transformation products distribution, and kinetic constants. RDX and its metabolites in water, plant, and sediment were analyzed by HPLC to determine mass balance and kinetic constants. After 30 days of operation, the reactor reached steady-state at which more than 99% of RDX was removed with or without the mixed culture inoculation. The major transformation product was TNX (Trinitroso-RDX) that comprised approximately 50% in the mass balance of both reactors. It was also the major compound in the plant root and shoot system. Acute toxicity analysis of the water samples showed more than 30% of toxicity reduction in the effluent than that of influent containing 40 mg/L of RDX. In the Amur silver grass mesocosm seeded with the mixed culture, the specific RDX removal rate, that is 1st order removal rate normalized to plant fresh weight, was estimated to be 0.84 kg−1 day−1 which is 16.7% higher than that in the planted only mesocosm. Therefore, the results of this study proved that Amur silver grass is an effective plant for RDX removal in constructed wetlands and the efficiency can be increased even more when applied with RDX degrading microbial consortia.

The Effect of Reject Water on the Water Quality of Effluent from S Sewage Treatment Plant (S 하수처리장 반류수가 방류수 수질에 미치는 영향)

  • Kim, Mi-Ran;Kim, Kyoung-Hee;Park, Hae-Sik;Kang, Dong-Hyo;Lee, Jea-Keun
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.323-329
    • /
    • 2010
  • To acquire preliminary data for the control of total nitrogen (TN) in S sewage treatment plant, which processes merging food waste and sewage, the effect of reject water on the total nitrogen in the effluent was examined in this study. Water quality data for the plant during the winter period were applied to calculate the mass balance. It was calculated that at least more than 231 kg/d TN should be removed to control the TN concentration in the effluent. Assuming 18 ppm as the goal TN concentration in the effluent, about 941 kg/d TN should be removed from this plant. Approximately 10% more TN should be removed than at present to achieve this result. It was observed that dewatering the filtrate had a considerably greater effect on the total nitrogen in the effluent than the reject waters. The dewatered filtrate contained 1,399kg/d TN. The contribution of the dewatered filtrate to the TN concentration in the effluent was 0.183, which was 7 to 23 times greater than the other reject waters. In addition, the amount of total nitrogen from the reject water, with the exception of the dewatering filtrate, was lower than the amount of TN that should be removed from S sewage treatment plant. Therefore, it was concluded that one of the most effective methods for controlling the TN concentration in effluent was the removal of the TN contained in the dewatering filtrate.

Effects of Dietary Animal Protein and Plant Protein on Iron Bioavailability in Young Korean Women (동물성과 식물성단백질이 한국인 젊은여성의 체내 철분이용도에 미치는 영향)

  • 곽충실
    • Journal of Nutrition and Health
    • /
    • v.27 no.5
    • /
    • pp.451-459
    • /
    • 1994
  • This study was performed to investigate the effect of sources of protein on iron bioavailability in 10 healthy young Korean women. The 18-day metabolic study consisted of a 6-day adaptation period, 6-day moderate protein(60g protein/day, 18mg Fe/day) and 6-day high protein period(90g protein/day, 18mg Fe/day). During the moderate and high protein period, 5 subjects were fed the high plant protein meals(80% plant protein). Fecal excretion of dietary iron was significantly higher(p<0.05) in high protein high plant diet group(HPP, 9.48$\pm$1.61mg/day) than in high protein high animal diet group (HPA, 14.40$\pm$0.89mg/day). Apparent absorption and bioavailability of iron was also significantly higher(p<0.10) in HPA(40.7$\pm$5.3%, 6.46$\pm$1.61mg/day) than in HPP(14.4$\pm$5.3%, 2.39$\pm$0.89mg/day). But there was no significant difference between the high animal protein group and high plant protein group in moderate protein period. Serum iron concentration and transferrin saturation increased as animal protein intake increased, from 106.0$\pm$5.1ug/이 and 30.6$\pm$1.5% for MPA to 129.1$\pm$6.7ug/이 and 37.1$\pm$1.3% for HPA. Statistically positive correlations were shown not only between the level of dietary heme iron and apparent absorption(r=0.95, p<0.05), but also between serum iron concentration and apparent absorption(r=0.64, p<0.05). Negative iron balance was shown in two subjects fed the moderate protein meals. These results suggest that recommanded dietary allowances of iron may be under the need to maintain the positive balance, and iron bioavaliability increase by only high level of animal protein intake.

  • PDF

A Study on the Exergy Losses of Steam Power Plant (증기 원동소의 엑서지 손실에 관한 연구)

  • Park, J.C.;Jang, M.S.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.3
    • /
    • pp.235-243
    • /
    • 1989
  • The purpose of this paper is to obtain enthalpy balance and exergy analysis for the energy losses in a steam power plant. The enthalpy and exergy analysis of the steam power plant were carried out on the various output of steam turbine. While enthalpy analysis shows that circulating loss in the condenser is maximum, exergy evaluation of the power plant shows that the losses of the boiler and turbine are considerably larger than those of condenser and feed water heater. Most irreversible losses of the power plant occur at the boiler. For improving the performance, the precise study about the irreversible losses of the boiler is necessary.

  • PDF

Rice Iron Metabolism: from Source to Solution

  • Santos, Livia Scheunemann dos;Oliveira, Antonio Costa de
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.64-72
    • /
    • 2007
  • Iron is an important micronutrient for plants. Iron metabolism is a complex mechanism under a delicate balance. Iron metabolism represents two major problems for plants: deficiency as a consequence of solubility problems and toxicity due to excess solubility in anaerobic conditions. In the last few years, new genes have been discovered that influence iron uptake, transport and storage. Irrigated rice is exposed to high levels of $Fe^{II}$, normally rare in aerobic soil conditions. The implications of altering iron uptake rates and the effects of newly discovered genes are discussed.

  • PDF

A Study on Unused Energy Management of Jeju City Waste Environment Center (제주시 폐기물환경사업소의 미활용에너지 활용방안 연구)

  • Kim, S.H.;Kwon, K.R.;Park, Y.C.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • In this study, waste heat of Jeju City Waste Environment Center is investigated and the utilization method is suggested with economical analysis of additional investment that needed for new facility. Energy balance of the typical facilities is considered in this study such as incineration plant and LFG power plant. The payback period of the investment which is used for the LFG power plant waste heat utilization facility is about 2.4 years and the economic profit of the facility during 10 years operation is up to 926 million won.

  • PDF

Optimization of conversion of sulfur dioxide in sulfuric acid plant (황산 공장의 수율 최적화에 관한 연구)

  • 원종국;조영상;정태경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.664-666
    • /
    • 1987
  • In this study, the computation of optimum operating conditions for catalytic oxidation of sulfur dioxide to sulfur trioxide in CONVERTER which determines the yield ultimately in sulfuric acid plant is performed on an IBM/XT computer. The process simulator of rigorous converter model including mass & energy balance equations and supporting equations is linked to optimizer, which produces the desired results successfully.

  • PDF

Changes of Gas Conditions of Iron Ore Sintering Process with FGR (제철 소결의 배가스 순환 적용에 따른 가스 조건 변화)

  • Ahn, Hyungjun;Choi, Sangmin;Cho, Byungkook
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.19-20
    • /
    • 2012
  • Flue gas recirculation(FGR) is applied to sintering process to cope with issues including plant efficiency and environmental effects. However, it inevitably brings changes of incoming and outgoing gas conditions as plant configurations. Objective of this study was to build a process model for a sintering bed using a flowsheet process simulator and obtain information of mass and heat balance for gas flows over various process configurations with FGR.

  • PDF

Engineering design procedure for gas turbine combined cycle power plant with post-combustion CO2 capture (CO2 포집을 고려한 가스터빈 복합화력 발전 플랜트의 시스템 대안 평가를 위한 공학 설계)

  • Lee, Soohyeon;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.333-335
    • /
    • 2014
  • As the user demand for power plants becomes various, design objective becomes complicated. To review the system feasibility, system objective and evaluation criteria need to be newly defined. In this study, engineering design procedure of the multi-purpose power plant, such as barge-mounted combined cycle power plant with $CO_2$ capture, was shown as a previous work for the feasibility review of the system alternatives. For the system design, heat and mass balance for each system configuration was firstly performed. Using the thermal analysis results, conceptual design of system alternatives was carried out. And then, preliminary design of the major equipment was done. The engineering calculation results of this study would be used as the evaluation data for system feasibility review.

  • PDF

State-Space Analysis on The Stability of Limit Cycle Predicted by Harmonic Balance

  • Lee, Byung-Jin;Yun, Suk-Chang;Kim, Chang-Joo;Park, Jung-Keun;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.697-705
    • /
    • 2011
  • In this paper, a closed-loop system constructed with a linear plant and nonlinearity in the feedback connection is considered to argue against its planar orbital stability. Through a state space approach, a main result that presents a sufficient stability criterion of the limit cycle predicted by solving the harmonic balance equation is given. Preliminarily, the harmonic balance of the nonlinear feedback loop is assumed to have a solution that determines the characteristics of the limit cycle. Using a state-space approach, the nonlinear loop equation is reformulated into a linear perturbed model through the introduction of a residual operator. By considering a series of transformations, such as a modified eigenstructure decomposition, periodic averaging, change of variables, and coordinate transformation, the stability of the limit cycle can be simply tested via a scalar function and matrix. Finally, the stability criterion is addressed by constructing a composite Lyapunov function of the transformed system.