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Rice Iron Metabolism: from Source to Solution
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Abstract

Iron is an important micronutrient for plants. Iron metabolism is a complex mechanism under a delicate balance. Iron metabolism
represents two major problems for plants: deficiency as a consequence of solubility problems and toxicity due to excess solubility in
anaerobic conditions. In the last few years, new genes have been discovered that influence iron uptake, transport, and storage.
Irrigated rice is exposed to high levels of Fe", normally rare in aerobic soil conditions. The implications of altering iron uptake rates

and the effects of newly discovered genes are discussed.
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Mineral nutrition is one of the most important factors
involved in plant growth and development. Among the essential
mineral elements, iron is of great importance due to its utilization
in fundamental processes. The role of iron in plant metabolism
is centered around its stable forms Fe” and Fe™ (Staiger 2002).
Iron-carrying compounds are constantly being oxidized from Fe"
to Fe™ during the electron transfer and vice-versa. Iron com-
plexes such as Fe-S proteins are key to electron transfer in the
respiratory complexes of mitochondria and in the photosynthesis
apparatus in the chloroplasts (Balk and Lobreaux 2005). Also,
Fe-S clusters participate in nitrogen fixation, DNA repair, and
metabolic pathways. Iron also plays an essential role as a com-
ponent of different enzymes involved in electron transfer (redox
reactions), such as cytochromes, both heme and non-heme
groups, electron carriers, and ferredoxin, a substance known to
be involved in the photosynthesis electron transfer (Barbosa
Filho 1994; Briat 1995; Briat and Lobreaux 1997). Iron also acts
as an essential enzyme cofactor involved in plant hormone syn-
thesis (Bouzayen 1991; Siedow 1991). Around 75% of leaf iron
is present in the chloroplasts as phytoferritin and ferredoxin,
which are known to be involved in the photosynthesis electron
transfer. In addition, two other important functions require iron:
synthesis of ribosomic proteins known as Fe-proteins and the
formation of Fe-chelate, which supplies iron to the chlorophyll
precursor chain (Barbosa Filho et al. 1994). Although it is not
part of the chlorophyll molecule, iron is essential for its synthesis.
Under iron deficiency, chlorophyll content and the number of
chloroplasts and their grana content decrease in the leaves
(Brown et al. 1972; reviewed in Vahl 1991). This review presents
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some state-of-the-art views on plant iron metabolism and pro-
vides insights into the necessity of breeding rice plants tolerant
to iron toxicity.

Iron uptake

Iron occurs mainly in the divalent form Fe". Iron content in
the soil is extremely variable, ranging from near zero up to 40%
in the form Fe;Os. It can be found distributed evenly, in clumps,
or nodules. When the distribution is even, iron oxides give the
soil a typical red color (Vahl 1991). Iron solubility in aerated
soils is controlled by Fe(OH),. Solubility in reduced soils is con-
trolled by FeCO:. In acrated soils, soluble iron represents just a
small fraction of the total iron content. The inorganic forms
present in solutions are Fe™, Fe(OH)™, and Fe". Fe" occurs in
extremely low proportions, except at very low pH conditions
(Bataglia 1991). Although iron is not a rare element in most
soils (around 3-6% of total minerals in the soil), iron deficiency
is a serious agricultural problem. Thirty percent of the world's
arable land consists of calcareous, and therefore, alkaline soils.
This problem is not easily fixed by the use of fertilizers that contain
iron, since it is iron availability not its abundance that characterizes
the problem (Guerinot 1994; Staiger 2002). Iron availability is
dependent on its form and the surrounding environmental condi-
tions. Iron occurs as an insoluble oxyhydroxide polymer, such as
goethite (a-FeOOH) or hematite (a-Fe;Os). These polymers are
generated by weathering. At veutral pH values, free iron ions
teach a maximum of 10”7 M and ferrous ions that are more soluble
are readily oxidized to ferric ions, which precipitate (Guerinot
1994). '

In order to cope with the low solubility of ferric ions, plants
require an active mechanism to release iron from Fe" oxide
hydrates to the soil solution and absorb it. Plants face a range of
iron availability in the environment due to their immobility.
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Both iron deficiency and toxicity are responsible for severe
nutritional dysfunctions greatly affecting their physiology
(Chaney et al. 1972; Ponnamperuma et al. 1955).

In general, two strategies have been described for the uptake of iron:

Strategy 1

Plants using this strategy release protons into the surrounding
thizosphere via a proton-ATPase. Dicot plants improve iron
absorption by three reactions: i) proton efflux via ATPase to
acidify the medium and therefore increase Fe" solubility; if)
reduction of Fe" by a Fe"-reductase to a more soluble form Fe':
iii) transport of Fe" by an iron transporter (Rémheld and
Marschner 1986).

Strategy 11

Grasses, similarly to microorganisms, acquire iron without
making use of a reductive mechanism. Grass roots release phy-
tosiderophores (PSs) that chelate Fe' at the rhizosphere, allowing
specific protein transporters to import the Fe™-PS complexes
(Hell and Stephan 2003; Romheld and Marschner 1986). Studies
on model organisms for iron uptake have shown that even
though yeast does not synthesize or secrete siderophores, bacterial
siderophores such as catecholate or hydroxamate can be recognized
and taken up by yeast cells (Yun et al. 2000a; Yun et al. 2000b).

Iron transport and signaling

Iron uptake and transport have been described in the model
eukaryote Saccharomyces cerevisiae (Curie and Briat 2003).
Reductases located within the plasma membrane reduce Fe™ to
Fe', a more soluble ion. A plasma membrane flavocytochrome
(Frelp) is responsible for Fe' reduction at the cell surface.
Paralogs of the FRE gene have been found (FRE2 - FRE7) as a
result of yeast genome sequencing (Johnston et al. 1997). FRE2
encodes a protein related to Frelp while FRE3 and FRE4 genes
are involved in Fe"-siderophore reduction (Dancis et al. 1990).
A low-affinity uptake system is responsible for ferrous iron
uptake when the cells are iron replete. Ferrous iron is acquired
by a plasma membrane transport protein encoded by the FET4
gene (Dix et al. 1994; Dix et al. 1997). The genes FET3 and
FTRI have been shown to play an important role in high-affinity
ferrous uptake, which is induced under iron-deficiency conditions
(Askwith et al. 1994; Stearman et al. 1996). FET3 encodes a
transmembrane protein from a family of multicopper oxidases.
FET3 has an oxidase catalytic domain located on the cell surface.
The other gene, FTRI, encodes a plasma membrane permease
containing a REGLE motif. This motif has been identified in the
ferritin iron storage protein and seems to be responsible for an
iron selective pore. A proposed model for high-affinity iron
uptake requires that Fe" produced by the Fe" reductases be oxidized
outside the cell by the Fet3p multicopper oxidase into Fe™, which
then binds to an Fe™ binding site on Firlp. A conformational
change is caused by this binding, enabling Fe" to be transported
to the cytoplasm (Eide 1998).

Other iron transport systems have been suggested, including
the NRAMP (Natural Resistance-Associated Macrophage
Protein) family of metal transporters NRAMP is conserved from

!

bacteria to mammals. However, these proteins have also been
shown to transport Ni, Zn, Cu, Co, and Cd, as well as Fe and Mn
(Gunshin et al. 1997). Vascular plants employ inter-organ sig-
naling to avoid imbalances in nutrient supply and to meet the
nutritional demands of the entire plant (Schmidt 2003). ITP1, an
iron-binding member of the LEA (late embryogenesis abundant)
protein family, has been suggested as the signal for systemic
regulation of root responses to iron (Krueger et al. 2002).
Several transcription factors are induced by iron deficiency,
including 14-3-3 and zinc-finger proteins in barley (Negishi et
al. 2002). Further, a protein containing a helix-loop-helix
domain, FER, was cloned from a tomato mutant (fer) unable to
switch on the responses to iron deficiency and only able to survive
with a heavy supply of iron chelates (Ling et al. 2002). It has
been suggested that nitric oxide (NO) is responsible for the
translation of the Fe-deficiency signal, a ubiquitous signal in
mammals and plants (Wendehenne et al. 2001).

Iron storage

Once iron is transported to the interior of the cell, it is necessary
that it be stored in order to avoid possible damage to cellular
structures due to the formation of reactive oxygen species. Iron
storage takes place in the apoplastic space between the plasmatic
membrane and the cell wall of plant cells, in mitochondria
(Zancani et al. 2004), plastids (Seckback 1982), and in the vac-
uole, where the low pH and high concentrations of organic acids
provide excellent conditions for iron deposits (Briat and
Lobréaux 1997).

The vacuole sequesters iron and a variety of other metals,
either as a mechanism of detoxifying the cell or as metal reservoir
to enable the cell to grow when challenged by a low iron envi-
ronment. Exactly how the vacuole contributes to iron metabolism
is not clear. Mutations that affect vacuolar function also disturb
the assembly of the plasma membranes' high affinity transport
system composed of a copper-containing iron oxidase
(Urbanowski and Piper 1999).

In both mitochondria and plastids, the specialized iron-storage
protein ferritin is used to store iron. Ferritins are a class of widely-
distributed iron storage proteins. They consist of hollow spheres
composed of 24 subunits which are capable of storing up to
4,500 atoms of iron per molecule in a soluble and bio-available
form (Balla et al. 1992; Connoly and Guerinot 2002; Harrison
and Arosio 1996). The iron stored inside the ferritin accounts for
92% of the total iron found in mature pea embryos (Marentes
and Grusak 1998), indicating an important role in plant develop-
ment. Ferritin synthesis is highly controlled by iron status inside
the cell. When in excess, iron is stored in a nontoxic form in
order to avoid reacting with oxygen (Briat et al. 1995; Briat et
al. 1999). A substantial amount of iron is stored in pea seeds,
and the increase in iron absorption by the root takes place at the
early stage of seed development (Lobréaux and Briat 1991).
Experiments in soybean and maize have shown that iron controls
the transcription and translation of plant ferritins (Fobis-Loisy et
al. 1996; Wei and Theil 2000).
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Fig. 1. Comparison of sequences homologous to maize Y57 gene based on 12 putative
membrane-spanning domains predicted by Curie et al. (2001).
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Genes involved in plant iron metabolism

Several genes involved in iron transport have been found in
Arabidopsis. Two root iron transporters, IRT1, responsible for
iron uptake from the soil and IRT2, have been characterized as
members of the ZIP family (Connolly et al. 2002; Eide et al.
1996; Guerinot 2000; Vert et al. 2002). A root iron-chelate
reductase, FRO2 (homologous to FREI, FRPI, and gp917*),
complements the Arabidopsis frd] mutant, deficient in root ferric-
reductase activity (Robinson et al. 1999). NRAMPI, 3 and 4,
members of the NRAMP family, are divalent metal transporters
which tend to show increased mRNA accumulation in Fe defi-
ciency (Curie et al. 2000; Thomine et al. 2000). Another gene,
ITP, a member of the LEA family, has been suggested by
sequence similarity to act as a polypeptide chelating Fe' in the
phloem (Krueger et al. 2002). An NFR homolog with iron reductase
activity in the tonoplast and in the phloem has also been
described. This gene belongs to the cytb5 reductase family
(Bagnaresi et al. 2000; Xoconoslte-Cazares et al. 2000). Another
group of genes, IREG1-3, are iron-efflux transporters belonging

to the IREG/Ferroportin family. These genes show sequence
similarity to mammalian iron efflux transporters (McKie et al.
2000). YS1, an Fe"-phytosiderophore transporter, was cloned in
maize from the ys/ (yellow striped) mutant (Curie et al. 2001). It
was reported as a membrane protein that mediates iron uptake.
Arabidopsis has eight homologs, YSLI-8. Recent reports in
Arabidopsis indicate that four genes encode ferritin (AtFerl-
AtFerd) and that AtFerl and AtFer3 play important roles in the
protection of plant cells from oxidative stress (Petit et al. 2001).
Also, there is evidence for the presence of an ABA-dependent
pathway for ferritin accumulation in maize. This was confirmed
by the expression of the AtFer2 gene in mature siliquas and dry
seeds, and an induction in response to ABA treatment (Briat and
Lobreaux 1997). Grasses that utilize strategy II release a low
molecular weight chelating compound such as mugineic acid
(MA). The phytosiderophore -Fe" complexes are then transported
into the plant (Grotz and Guerinot 2002). In this process, two
genes are required for the conversion of S-adenosyl methionine
to Nicotianamine (nicotianamine synthase - NAS) and
Nicotianamine (NA) to deoxymugineic acid (Nicotianamine
aminotransferase - NAAT).

In order to investigate possible evolution mechanisms for
these genes, a comparison of the conserved regions of the proteins
encoded by YSI, IRTI, and FRO!I was performed by our group.
A total of 48 protein homologs for YSI were found in the NCBI
database. A phylogenetic analysis was performed using a nearest
neighbor joining tree approach (Figurel). Four clusters were
identified: one consisted of grass protein coding genes, two con-
sisted of dicot genes, and one cluster consisted of genes from
grasses and dicot plants. One possible explanation is that this
cluster holds the ortholog genes and the other three clusters
show paralogs from grasses and dicots. This would suggest that
the dicots shown here have at least three copies of this gene,
while rice, representing the grasses, has only two. The genes
IRT! and IRT?2 have at least 48 homologs deposited in the NCBI
database (Figure 2). Three major clusters can be identified. The
larger cluster contains only dicot plants. The second cluster con-
sists of five rice homologs and one dicot homolog from
Medicago truncatula. The third cluster again has protein-coding
genes from dicots and monocots. One of the rice iron trans-
porters (Fel') seems closer to IRT] and IRT2 than the other iron
transporter (Fe"). This is consistent with rice's need to transport
Fe'" ions that are more abundant under flooding or waterlogged
soils. This situation is not faced by other plants such as
Arabidopsis. The sequence similarity analysis for Arabidopsis
FROI revealed that the 30 homologs cluster into three major
groups. The first cluster is formed by dicots and monocots, the
smallest cluster contains two Arabidopsis homologs, and the
third cluster contains both dicots and monocots. Comparing rice
sequences, one can predict that rice has two ferric-chelate reductases,
one closer to Arabidopsis FROI (ferric reductase 2) and one
closer to an oxidoreductase (ferric reductase 1). Possible over-
lapping functions for these genes remains to be investigated.

The analyses performed on these major genes involved in
iron metabolism (YS7, IRT1, and FROI) suggests that part of the
iron metabolism is highly conserved among taxa and that rice
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has developed some special strategies to deal with an anaerobic
environment. However, further investigations are needed to
reveal which proteins/protein domains would be more adequate
for transgenic approaches aimed at improving iron tolerance,
uptake, and metabolism.

Iron toxicity

Iron excess is found mainly in waterlogged or flooded soils
where anaerobic conditions occur, such as irrigated rice fields.
Under these conditions, Fe' ions are readily reduced to more
soluble Fe" ions. Nutritional disorders associated with iron toxicity
have been divided into direct and indirect toxicity (Vahl 1991).
Direct toxicity is related to the plant's excessive iron absorption.
This is damaging to plant cells. Symptoms appear initially on
younger leaves, where the element concentrates in small brown
dots. This phenomenon is known as bronzing (Bienfait 1985;
Mengel and Kirkby 1982). Under extreme or prolonged defi-
ciency, the leaves may become chlorotic. In advanced toxicity
stages necrosis may occurt, i.e. the leaves dry and eventually
die. Although the degree of bronzing has been suggested as a
good way to measure the degree of toxicity (IRRI 1965; Ota
1968), the mechanism underlying the bronzing phenotype and
tolerance is not well understood (Briat and Lobreaux 1997; Ota
1968; Peng and Yamauchi 1993). The leaves become chlorotic
because iron is necessary to synthesize some of the chlorophyll-
protein complexes in the chloroplast. Iron's low mobility is likely
due to its precipitation in older leaves as insoluble oxides or
phosphates, or to the formation of complexes with phytoferritin,
an iron binding protein (Oh et al. 1996). Iron precipitation
decreases the metal's subsequent mobilization inside the phloem.
This type of toxicity is less common in Brazilian conditions, but
is frequently seen in other climes, where some soils develop
extremely high levels of Fe* when flooded. Indirect toxicity
results from the limited absorption of several nutrients such as
calcium, magnesium, potassium, phosphorous, and iron itself,
due to iron precipitation on rice root epidermis. The formation
of an oxide-hydroxide Fe* layer on the root blocks nutrient
absorption, resulting in multiple nutritional deficiencies.
Symptoms of this deficiency include plant atrophy, tillering
reduction, orange leaves, and the covering of roots by red layers
of iron oxides. Toxicity symptoms are usually correlated with
iron deposition in the roots (Barbosa Filho et al. 1994; Vahl
1991) but leaf peroxidase activity has been shown to increase
(Fang et al. 2000; Peng et al. 1996).

At the cellular level, it is not only insolubility, but iron's high
reactivity that can cause severe damage. Reactions involving
iron in high concentrations in the interior of the cell may be
highly damaging to the plant. These reactions can produce reactive
species of oxygen, specifically the hydroxyl radical (OH®),
through the Fenton Reaction. The same physical properties that
allow iron to act as an efficient cofactor and to catalyze con-
trolled redox reactions also allow it to act as a powerful toxin
when not protected from susceptible biomolecules. Numerous
intracellular reactions use molecular oxygen as an electron
acceptor producing superoxides (O») or hydrogen peroxide
(H:0.). These species are not harmful per se, but they contribute

to the generation of reactive oxygen species, hydroxyl radical
(OH®) in this case. Its formation is catalyzed by iron through the
Fenton Reaction (Hell and Stephan 2003):

Fe't + 0, — Fe** + 0,
Fe* + H:0,> — Fe’* + OH + OH®

Or:
0:* + H,0; — 0, + OH + OH°

Once iron enters the radicular symplast via the membrane
transport system, it must be protected once more from oxygen.
Protection is necessary in order to avoid precipitation and the
generation of reactive oxygen species. While several organic
acids and cellular amino acids are able to chelate iron, nico-
tianamine (NA) seems to be preferred for several reasons: i) It
forms stable complexes with both oxidation states of iron at neutral
and weakly alkaline pH (Stephan et al. 1996). Although the Fe*-
NA complex has a much higher formation constant, the Fe*-NA
complex is kinetically more stable under aerobic conditions (von
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Fig. 2. Comparison of sequences homologous to Arabidopsis /RT1, based on con-
served protein domains.
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Fig. 3. Comparison of sequences homologous to Arabidopsis FRO1, based on con-
served protein domains.

Wiren et al. 1999); if) NA appears to be ubiquitous in higher
plants and is present in all tissues (Scholz et al. 1992); iii) NA-
iron complexes are relatively poor Fenton reagents (von Wiren
et al. 1999); iv) The NA-deficient tomato mutant chloronerva
shows elevated activities of antioxidant enzymes (Herbik et al.
1996) and precipitation of iron in vacuoles and mitochondria
(Liu et al. 1998); v). NA concentrations are increased in the root
tips in both sunflower and barley in the regions of main iron
uptake and radial transport (Stephan and Scholz 1990). NA con-
centrations correlate with localization and levels of iron in pea
and tomato plants (Pich et al. 2001).

Information on nutritional disorders in rice caused by
micronutrients in Brazilian soils indicates that, after zinc, iron is
the element that most frequently limits rice production, either
when cultivated under dry or flooded conditions. In dry situa-
tions, the problem is related to the iron's deficiency. Under
flooded conditions problems arise due to toxicity. The toxicity
observed in flooded plants is due to the accumulation of Fe" in

%

flooded soils. The increase in Fe" concentrations is a conse-
quence of Fe'" reduction found in aerated soils under the form of
low solubility iron oxides. This reduction, observed when the
flooded soil redox potential reaches 100-300mV, may increase
soluble iron content up to 600 ppm, versus medium rates of 0.1
ppm in aerated soils (Brennan and Lindsay 1998).

In Brazilian soils commonly cultivated with flooded rice, soluble
iron content after flooding does not reach such high levels as
registered in other traditional, rice-growing countries. Generally,
the iron content in Brazilian soils does not exceed 100 ppm.
However, these levels are sufficient to cause iron toxicity in rice
(Barbosa Filho et al. 1994). The iron content in which toxicity
occurs in the soil and plant ranges is between 10 and 1000 ppm
and 50 and 1700 ppm, respectively. Such broad limits illustrate
that toxicity development is a complex phenomenon. It does not
appear that there is a specific factor in either the soil or the plant
that allows a prediction of toxicity (Barbosa Filho et al. 1994).

The predominant and therefore the most important form of
toxicity in Brazil is indirect. Toxicity due to the ferric form (Fe")
can cause considerable losses in rice production. This is espe-
cially the case in the acid soils of tropical and subtropical areas
(Fageria and Rabelo 1987; Wu et al. 1998), as found in southern
Brazil. These regions are characterized by their richness in iron
and low pH (Silva et al. 2003). Occurrence in rice fields may
cause reductions in productivity from 10 to 80% (reviewed in
Vahl 1991). Iron toxicity was detected in Brazil during the
1970s. The introduction of modern type rice cultivars, some of
which showed sensitivity to the excess of iron in the soil,
revealed the problem. The problem was also seen in the states of
Santa Catarina, Minas Gerais, Rio de Janeiro, Espitito Santo,
Goids, and Rio Grande do Sul (Reviewed in Vahl 1991; Vieira

et al. 1999).

Improving iron tolerance in rice

Although rice is described as a strategy II plant, today we
know that it also absorbs iron through strategy 1. While it is able
to absorb iron via the connection of iron ions to phy-
tosiderophores, it also absorbs iron through the acidification of
the medium caused by proton efflux. This leads to the acidification
of the medium and increase of the more soluble ferric form, in
the soil (Ishimaru et al. 2006). This evidence supports the obser-
vation that rice has an advantageous strategy for growth in sub-
merged conditions. Differences in the ability to absorb nutrients,
the degree of resistance to toxic elements, and efficiency in the
use of absorbed nutrients occurs both within and between many
cultivated species (Clark 1983; Furlani 1986).

One strategy that was used to investigate iron tolerance in
rice is the development of mapping populations. A DH population
consisting of 123 lines was developed from a cross between
IR64 and Azucena (Guiderdoni et al. 1992). The parents, 123
DH lines and 100 DHBC1F1 (DH lines backcrossed to Azucena)
were used to find markers associated to seedling tolerance for
ferrous iron toxicity (Wu et al. 1997). Using 175 cDNA and
genomic clones, four marker loci on chromosome 1 were identified
to be significantly associated with both segregations of tolerance
index value (degree of bronzing) and RDSDW (relative decrease
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in shoot dry weight). One marker locus was significantly associated
with RDSDW. QTLs explaining 32 and 15% of the tolerance
index value and 15, 21, and 10% of the RDSDW were found
{Wu et al. 1997). Another population consisting of 96 backcross
inbred lines (BILs) derived from a cross Nipponbare/Kasalath/
Nipponbare was developed (Wan et al. 2003). The 96 BIL lines
in BC1F9 were evaluated for their ferrous iron tolerance toxicity.
Using RFLP markers, four QTLs were detected on chromosomes
1 and 3 that were significantly associated with leaf bronze index,
stem dry weight, tiller number, and root dry weight.

With the current knowledge of iron metabolism obtained
from yeast and Arabidopsis studies, many transgenic approaches
have been suggested for improving iron tolerance and biofortifi-
cation in rice. Expression of the soybean ferritin gene from the
rice glutelin gene promoter enhanced the Fe content of rice seed
by up to 3-fold (Goto et al. 1999). Any project with this goal
must focus on rate-limiting processes in transport, synthesis, and
storage of substrate and products. Iron influence in network control
of metabolic pathways and allocation must also be taken into
account (Hell and Stephan 2003). In transgenic tobacco, consti-
tutive expression of two Fe™.chelate reductases from yeast
resulted in a 4-fold increase in iron reductase activity and a 50%
increase in leaf iron content (Samuelsen et al. 1998).
Constitutive expression of NA synthase from Arabidopsis,
resulted in a 2- to 4-fold increase in leaf iron content. Tobacco
plants grew faster and performed more efficiently under iron
deficient conditions (Douchkov et al. 2001). These observations
suggest that improving iron uptake alone is not sufficient
because of rate-limiting steps further in the pathway.
Alternatively, increasing NA synthesis may be a viable option,
although co-suppression has been observed in rice transformed
with the barley NAS gene (Mori et al. 2001).

It is important to role that rice produces less phy-
tosiderophores than wheat and barley. One could aim to increase
its PS production. Indeed, expression of barley NA aminotrans-
ferase in rice improved tolerance, achieving higher vigor, and a
4-fold higher grain yield (Takahashi et al. 2001).

Another strategy to obtain improved genotypes for iron toxicity
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Fig. 4. Display of shoot length responses for mutant 6, parental cultivar Taim and
cultivar IRGA 409,

Table 1. List of rice mutant genotypes used for the iron toxicity response analysis.

N Genotype N Genotype N Genotype

CGF-Z-M05-435 14 CGF-Z-M05-328 27 CGF-Z-M05-65
CGF-Z-M05-437 15 CGF-Z-M05-62 ARSZ 28 CGF-Z-M05-31 ARS3
CGF-Z-M0O5-78 ARST 16 CGF-Z-M05-440 29 CGF-Z-M05-168
CGF-Z-M05-243 17 CGF-Z-M05-436 30 CGF-Z-M05-59
CGF-Z-M05-45 18 CGF-Z-M05-78 ARS 31 CGF-Z-M05-444 P1
CGF-Z-M05-188 19 CGF-Z-M05-280 32 CGF-Z-M05-204
CGF-Z-M05-42 20 CGF-Z-M05-205 33 CGF-Z-M05-41
CGF-Z-M05-44 21 CGF-Z-M05-260 P1 34 CGF-Z-M05-295
CGF-Z-M05-79 22 CGF-Z-M05-189 35 CGF-Z-M05-32
CGF-Z-M05-121 ARS 23 CGF-Z-M05-167 36 CGF-Z-MO5-EPAGRI 108
CGF-Z-M05-258 24 CGF-Z-M05-417 ARP 37 CGF-Z-MO5-IRGA 409
CGF-Z-M05-53 25 CGF-Z-M05-336 38 CGF-Z-MO5-TAIM
CGF-Z-M05-22 P 26 CGF-Z-M05-192

— s N
vl R~ - - C RN B IV

tolerance relies on induced mutation. A collection of rice mutant
genotypes (Table 1) showing root morphology polymorphisms
derived by gamma ray treatment of indica cultivar Taim was
developed by our group (Zimmer et al. 2003). A subset of these
mutants has been analyzed for response to iron toxicity (Tablel).
Seven variables were analyzed: number of roots (NR), main root
length (MRL), coleoptile length (CL), shoot length (SL), first
leaf insertion (FLI), first leaf length (FLL), and second leaf
length (SLL).

Mutant 6 showed one of the best relative performances, being
constantly among the three higher values in six of seven evaluated
variables (NR, CL, FLI, FLL, SLL, and APL). It also showed
the highest values in four variables (FLI, FLL, SLL, and APL),
showing great potential as an iron tolerant genotype. Mutants 4
and 7 were also promising, as both were in the top three values
of relative performance in four of seven evaluated characters
(FLIL FLL, SLL, and APL; CL, FLI, FLL, and APL, respectively).
Mutant 26 was among the three highest values of relative per-
formance in three of seven evaluated characters (NR, MRL, and
CL). These mutants show promise for studying iron uptake and
metabolism and are being further investigated. Figure 4 displays
mutant 6 response in SL compared to the parental cultivar Taim
under iron toxicity treatment.

Conclusions and perspectives

Improving iron accumulation and bioavailability is the ultimate
goal for combating anemia worldwide. However, rice is the
major staple food for over half of the world's population.
Therefore, it is first necessary to understand how rice tolerates
iron in the soil and then drives this excess metal to accumulation
in the grain. Dealing with iron is not a simple task, and a better
understanding of the mechanisms by which plants absorb, transport,
and store iron indicates that a delicate balance exists in its
metabolism. Increasing iron uptake sometimes leads to the over
absorption of heavy metals such as cadmium. The scientific dis-
coveries of the last decade are promising and will have a clear
impact on the manipulation of this important mineral in rice.
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