• 제목/요약/키워드: Bacteroides

검색결과 194건 처리시간 0.028초

Lower Airway Microbiota and Lung Cancer

  • Sanchez-Hellin, Victoria;Galiana, Antonio;Zamora-Molina, Lucia;Soler-Sempere, Maria J.;Grau-Delgado, Justo;Barbera, Victor M.;Padilla-Navas, Isabel;Garcia-Pachon, Eduardo
    • 한국미생물·생명공학회지
    • /
    • 제47권3호
    • /
    • pp.441-448
    • /
    • 2019
  • This study was aimed at identifying the lower airway microbiota in patients with lung cancer (LC) using protected brush sampling. We enrolled 37 patients undergoing diagnostic bronchoscopy for suspected LC, 26 with LC and 11 with benign diseases. Protected brush specimens were obtained from the contralateral lung and the side of the tumor; these specimens were analyzed by 16S rRNA-based-next-generation sequencing. The results indicated that the biodiversity was not different between groups, and there were no significant differences between the proportion of microorganisms in the tumor and in the contralateral side of patients with LC. In patients with LC, there was a higher abundance of several microorganisms including Capnocytophaga, Haemophilus, Enterococcus, and Streptococcus; whereas, in individuals without LC, Bacteroides, Lactobacillus, or Methylobacterium were more abundant. Malignancy could be determined with an accuracy of 70% by isolating Enterococcus, Capnocytophaga, or Actinomyces. Microbispora indicated benignity with a sensitivity of 55%, specificity of 88%, and accuracy of 78%. Lower airway microbiota in patients with LC is fairly similar in both the tumor and contralateral sites. Endobronchial microbiota is different in patients with and without LC, and these differences may have a potential clinical value as diagnostic or prognostic biomarkers.

The impact of different diets and genders on fecal microbiota in Hanwoo cattle

  • Seunghyeun, Sim;Huseong, Lee;Sang, Yoon;Hyeonsu, Seon;Cheolju, Park;Minseok, Kim
    • Journal of Animal Science and Technology
    • /
    • 제64권5호
    • /
    • pp.897-910
    • /
    • 2022
  • Bovine fecal microbiota is important for host health and its composition can be affected by various factors, such as diet, age, species, breed, regions, and environments. The objective of this study was to evaluate the impact of diet and gender on fecal microbiota in Korean native Hanwoo cattle. The 16S rRNA gene amplicon sequencing of fecal microbiota was conducted from 44 Hanwoo cattle divided into four groups: (1) 11 heifers fed an oat hay plus total mixed ration (TMR) diet for breeding (HOTB), (2) 11 heifers fed an early fattening TMR diet (HEFT), (3) 11 steers fed the early fattening TMR diet (SEFT), and (4) 11 steers fed the late fattening TMR diet (SLFT). Firmicutes and Bacteroidota were the first and second most dominant phyla in all the samples, respectively. The Firmicutes/Bacteroidota (F/B) ratio associated with feed efficiency was significantly greater in the SLFT group than in the other groups. At the genus level, Romboutsia, Paeniclostridium, and Turicibacter were the most abundant in the SLFT while Akkermansia, Bacteroides, and Monoglobus were the most abundant in the HOTB group. Although the same early fattening TMR diet was fed to Hanwoo heifers and steers, Marvinbryantia and Coprococcus were the most abundant in the HEFT group while Alistipes and Ruminococcus were the most abundant in the SEFT group. Shannon and Simpson diversity indices were significantly lower in the SLFT group than in the other groups. Distribution of fecal microbiota and functional genetic profiles were significantly different among the four treatment groups. The present study demonstrates that different diets and genders can affect fecal microbiota and the F/B ratio may be associated with feed efficiency in Hanwoo cattle. Our results may help develop strategies to improve gut health and productivity through manipulation of fecal microbiota using the appropriate diet considering Hanwoo cattle gender.

Intestinal microbial composition changes induced by Lactobacillus plantarum GBL 16, 17 fermented feed and intestinal immune homeostasis regulation in pigs

  • Da Yoon, Yu;Sang-Hyon, Oh;In Sung, Kim;Gwang Il, Kim;Jeong A, Kim;Yang Soo, Moon;Jae Cheol, Jang;Sang Suk, Lee;Jong Hyun, Jung;Jun, Park;Kwang Keun, Cho
    • Journal of Animal Science and Technology
    • /
    • 제64권6호
    • /
    • pp.1184-1198
    • /
    • 2022
  • In this study, Rubus coreanus (R. coreanus) byproducts with high polyphenol content were fermented with R. coreanus-derived lactic acid bacteria (Lactobacillus plantarum GBL 16 and 17). Then the effect of R. coreanus-derived lactic acid bacteria fermented feed (RC-LAB fermented feed) with probiotics (Bacillus subtills, Aspergillus oryzae, Yeast) as a feed additive for pigs on the composition of intestinal microbes and the regulation of intestinal immune homeostasis was investigated. Seventy-two finishing Berkshire pigs were randomly allotted to four different treatment groups and 18 replicates. RC-LAB fermented feed with probiotics increased the genera Lactobacillus, Streptococcus, Mitsuokella, Prevotella, Bacteroides spp., Roseburia spp., and Faecalibacterium prausnitzii, which are beneficial bacteria of the digestive tract of pigs. Also, RC-LAB fermented feed with probiotics decreased the genera Clostridium, Terrisporobacter, Romboutsia, Kandleria, Megasphaera and Escherichia, which are harmful bacteria. In particular, the relative abundance of the genera Lactobacillus and Streptococcus increased by an average of 8.51% and 4.68% in the treatment groups and the classes Clostridia and genera Escherichia decreased by an average of 27.05% and 2.85% in the treatment groups. In mesenteric lymph nodes (MLN) and spleens, the mRNA expression of transcription factors and cytokines in Th1 and Treg cells increased and the mRNA expression of Th2 and Th17 transcription factors and cytokines decreased, indicating a regulatory effect on intestinal immune homeostasis. RC-LAB fermented feed regulates gut immune homeostasis by influencing the composition of beneficial and detrimental microorganisms in the gut and regulating the balance of Th1/Th2 and Th17/Treg cells.

Effects of fermented feed on growth performance, nutrient metabolism and cecal microflora of broilers

  • Li, Jiantao;Tao, Lijuan;Zhang, Rong;Yang, Guiqin
    • Animal Bioscience
    • /
    • 제35권4호
    • /
    • pp.596-604
    • /
    • 2022
  • Objective: To investigate the effects of enzyme-bacteria co-fermented feed on broilers, the basal diet (BF) was pretreated by microbial enzyme co-fermentation, and then different proportions of BF were replaced to study its effects on growth performance, nutrient metabolism and cecal microflora of broilers. Methods: Four hundred and eighty 1-day-old broilers were randomly divided into 6 groups. The control group was fed with BF, and groups 1 to 4 were treated with dried fermented feed (DFF) instead of 10%, 15%, 20%, and 25% the BF, and group 5 was treated with wet fermented feed (WFF) instead of 10% the BF, named BF, 10% DFF, 15% DFF, 20% DFF, 25% DFF, and 10% WFF, respectively. The trial period was 42 days. Results: The results showed that the average daily feed intake and average daily gain of 10% DFF, 15% DFF, and 10% WFF groups were significantly higher than those of the control group at 22 to 42 days and 1 to 42 days (p<0.05). Except for 10% DFF group, Firmicutes of all treatment were higher than that of control group. The Bacteroides of each treatment group were lower than that of the control group (p>0.05). At the same time, the nutrient apparent metabolic rate and cecal microbial abundance of each treatment group had an increasing trend (p>0.05). Conclusion: In conclusion, the feed fermented by enzyme and bacteria had a potential promoting effect on the growth performance and nutrient digestibility of broilers.

Bacillus amyloliquefaciens and Saccharomyces cerevisiae feed supplements improve growth performance and gut mucosal architecture with modulations on cecal microbiota in red-feathered native chickens

  • Lee, Tzu-Tai;Chou, Chung-Hsi;Wang, Chinling;Lu, Hsuan-Ying;Yang, Wen-Yuan
    • Animal Bioscience
    • /
    • 제35권6호
    • /
    • pp.869-883
    • /
    • 2022
  • Objective: The aim of study was to investigate the effects of in-feed supplementation of Bacillus amyloliquefaciens (BA) and Saccharomyces cerevisiae (SC) on growth performance, gut integrity, and microbiota modulations in red-feathered native chickens (RFCs). Methods: A total of 18,000 RFCs in a commercial farm were evenly assigned into two dietary treatments (control diet; 0.05% BA and 0.05% SC) by randomization and raised for 11 weeks in two separate houses. Fifty RFCs in each group were randomly selected and raised in the original house with the partition for performance evaluations at the age of 9 and 11 weeks. Six non-partitioned RFCs per group were randomly selected for analyses of intestinal architecture and 16S rRNA metagenomics. Results: Feeding BA and SC increased the body weight and body weight gain, significantly at the age of 11 weeks (p<0.05). The villus height/crypt ratio in the small intestines and Firmicutes to Bacteroidetes ratio were also notably increased (p<0.05). The supplementation did not disturb the microbial community structure but promote the featured microbial shifts characterized by the significant increments of Bernesiella, Prevotellaceae_NK3B31_group, and Butyrucimonas, following remarkable decrements of Bacteroides, Rikenellaceae_RC9_gut_group, and Succinatimonas in RFCs with growth benefits. Besides, functional pathways of peptidoglycan biosynthesis, nucleotide excision repair, glycolysis/gluconeogenesis, and aminoacyl transfer ribonucleic acid (tRNA) biosynthesis were significantly promoted (p<0.05). Conclusion: In-feed supplementation of BA and SC enhanced the growth performance, improved mucosal architectures in small intestines, and modulated the cecal microbiota and metabolic pathways in RFCs.

Therapeutic effects of paeoniflorin on irritable bowel syndrome in rats

  • Lei Wang;Jinyan Lei;Zeyu Zhao;Jianwei Jia;Li Wang
    • Journal of Veterinary Science
    • /
    • 제24권3호
    • /
    • pp.23.1-23.16
    • /
    • 2023
  • Background: Irritable bowel syndrome (IBS) is a functional bowel disorder (FBD). Objectives: To assess the therapeutic effects of paeoniflorin (PF) on IBS in rats. Method: Sixty male Sprague-Dawley rats were randomly divided into normal, model, positive drug, low-dose PF, medium-dose PF and high-dose PF groups (n = 10). After gavage for 2 consecutive weeks, the effect of PF on abdominal pain symptoms was assessed based on the abdominal withdrawal reflex (AWR) score, fecal water content and pathological changes in colon tissues. D-lactate, interleukin-1β (IL-1β), transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, and phosphorylated nuclear factor kappa B (p-NF-κB) p65 was detected by Western blotting. The abundance and diversity changes of intestinal flora were explored using 16S ribosomal RNA sequencing. Result: In PF groups, the mucosal morphology of colon tissues was intact, and the glands were arranged neatly and structured clearly, without obvious inflammatory cell infiltration. Compared with the model group, PF groups had significantly elevated pain threshold, and mRNA and protein levels of zonula occludens-1 (ZO-1) and occludin, decreased AWR score at 20 mmHg pressure, fecal water content, mRNA levels of IL-1β, TGF-β, and TNF-α, protein level of p-NF-κB p65 and level of serum D-lactate, and reduced levels of serum IL-1β, TGF-β, and TNF-α (p < 0.05, p < 0.01). PF groups had higher abundance of Lactobacillus, Akkermansia, Alistipes, and Bacteroides, but lower abundance of Desulfovibrio, Parasutterella, and Enterococcus than those of the model group. Conclusions: PF exerts therapeutic effects on IBS in rats probably by regulating the intestinal flora, and then up-regulating the expressions of ZO-1 and occludin in colon tissue while down-regulating the levels of IL-1β, TGF-β, TNF-α, D-lactate and p-NF-κB p65.

Microbial profiling of peri-implantitis compared to the periodontal microbiota in health and disease using 16S rRNA sequencing

  • Hyun-Joo Kim;Dae-Hee Ahn;Yeuni Yu;Hyejung Han;Si Yeong Kim;Ji-Young Joo;Jin Chung;Hee Sam Na;Ju-Youn Lee
    • Journal of Periodontal and Implant Science
    • /
    • 제53권1호
    • /
    • pp.69-84
    • /
    • 2023
  • Purpose: The objective of this study was to analyze the microbial profile of individuals with peri-implantitis (PI) compared to those of periodontally healthy (PH) subjects and periodontitis (PT) subjects using Illumina sequencing. Methods: Buccal, supragingival, and subgingival plaque samples were collected from 109 subjects (PH: 30, PT: 49, and PI: 30). The V3-V4 region of 16S rRNA was sequenced and analyzed to profile the plaque microbiota. Results: Microbial community diversity in the PI group was higher than in the other groups, and the 3 groups showed significantly separated clusters in the buccal samples. The PI group showed different patterns of relative abundance from those in the PH and PT groups depending on the sampling site at both genus and phylum levels. In all samples, some bacterial species presented considerably higher relative abundances in the PI group than in the PH and PT groups, including Anaerotignum lactatifermentans, Bacteroides vulgatus, Faecalibacterium prausnitzii, Olsenella uli, Parasutterella excrementihominis, Prevotella buccae, Pseudoramibacter alactolyticus, Treponema parvum, and Slackia exigua. Network analysis identified that several well-known periodontal pathogens and newly recognized bacteria were closely correlated with each other. Conclusions: The composition of the microbiota was considerably different in PI subjects compared to PH and PT subjects, and these results could shed light on the mechanisms involved in the development of PI.

Dietary supplementation of solubles from shredded, steam-exploded pine particles modulates cecal microbiome composition in broiler chickens

  • Chris Major Ncho;Akshat Goel;Vaishali Gupta;Chae-Mi Jeong;Ji-Young Jung;Si-Young Ha;Jae-Kyung Yang;Yang-Ho Choi
    • Journal of Animal Science and Technology
    • /
    • 제65권5호
    • /
    • pp.971-988
    • /
    • 2023
  • This study evaluated the effects of supplementing solubles from shredded, steam-exploded pine particles (SSPP) on growth performances, plasma biochemicals, and microbial composition in broilers. The birds were reared for 28 days and fed basal diets with or without the inclusion of SSPP from 8 days old. There were a total of three dietary treatments supplemented with 0% (0% SSPP), 0.1% (0.1% SSPP) and 0.4% (0.4% SSPP) SSPP in basal diets. Supplementation of SSPP did not significantly affect growth or plasma biochemicals, but there was a clear indication of diet-induced microbial shifts. Beta-diversity analysis revealed SSPP supplementation-related clustering (ANOSIM: r = 0.31, p < 0.01), with an overall lower (PERMDISP: p < 0.05) individual dispersion in comparison to the control group. In addition, the proportions of the Bacteroides were increased, and the relative abundances of the families Vallitaleaceae, Defluviitaleaceae, Clostridiaceae, and the genera Butyricicoccus and Anaerofilum (p < 0.05) were significantly higher in the 0.4% SSPP group than in the control group. Furthermore, the linear discriminant analysis effect size (LEfSe) also showed that beneficial bacteria such as Ruminococcus albus and Butyricicoccus pullicaecorum were identified as microbial biomarkers of dietary SSPP inclusion (p < 0.05; | LDA effect size | > 2.0). Finally, network analysis showed that strong positive correlations were established among microbial species belonging to the class Clostridia, whereas Erysipelotrichia and Bacteroidia were mostly negatively correlated with Clostridia. Taken together, the results suggested that SSPP supplementation modulates the cecal microbial composition of broilers toward a "healthier" profile.

Effects of supplemental bacteriophage on the gut microbiota and nutrient digestibility of ileal-cannulated pigs

  • Hyunwoong Jo;Geongoo Han;Eun Bae Kim;Changsu Kong;Beob Gyun Kim
    • Journal of Animal Science and Technology
    • /
    • 제66권2호
    • /
    • pp.340-352
    • /
    • 2024
  • This study measured the potential changes of the microbiota in the gastrointestinal tract and energy and nutrient digestibility by supplemental bacteriophages in pigs. Twelve castrated male pigs (initial mean body weight = 29.5 ± 2.3 kg) were surgically cannulated using T-cannula. The animals were housed individually in pens equipped with a feeder and a nipple waterer. The pigs were allotted to 1 of 3 experimental diets in a quadruplicated 3 × 2 Latin square design with 3 experimental diets, 2 periods, and 12 pigs resulting in 8 replicates per diet. The 3 diets were a control mainly based on corn and soybean meal with no antibiotics or bacteriophages, a diet containing 0.1% antibiotics, and a diet containing 0.2% bacteriophages. On day 5 of the experimental period, feces were collected and on days 6 and 7, ileal digesta were collected. Genomic DNA for bacteria were extracted from the ileal digesta and feces and the V4 region of the 16S rRNA gene was amplified. The ileal and fecal digestibility of energy, dry matter, organic matter, crude protein, and fiber was unaffected by dietary antibiotics or bacteriophages. At the phylum level, the supplemental antibiotic or bacteriophage tended to result in a higher proportion of Firmicutes (p = 0.059) and a lower proportion of Bacteroidetes (p = 0.099) in the ileal digesta samples compared with the control group with no difference between the antibiotic and bacteriophage groups. At the genus level, the supplemental antibiotic or bacteriophage tended to result in a higher proportion of Lactobacillus (p = 0.062) and a lower proportion of Bacteroides (p = 0.074) and Streptococcus (p = 0.088) in the ileal digesta compared with the control group with no difference between the antibiotic and bacteriophage groups. In the feces, supplemental antibiotics or bacteriophages reduced the proportion of Bifidobacterium compared with the control group (p = 0.029) with no difference between the antibiotic and bacteriophage groups. Overall, supplemental antibiotics and bacteriophages showed positive effect on the microbiota of in the ileal digesta without largely affecting energy or nutrient digestibility, with no differences between the antibiotic and bacteriophage groups in growing pigs.

Effects of dietary mulberry leaves on growth, production performance, gut microbiota, and immunological parameters in poultry and livestock: a systematic review and meta-analysis

  • Bing Geng;Jinbo Gao;Hongbing Cheng;Guang Guo;Zhaohong Wang
    • Animal Bioscience
    • /
    • 제37권6호
    • /
    • pp.1065-1076
    • /
    • 2024
  • Objective: This study aimed to assess the effects of dietary mulberry leaves on the growth, production performance, gut microbiota, and immunological parameters of poultry and livestock. Methods: The PubMed, Embase, and Scopus databases were systematically analyzed to identify pertinent studies up to December 2022. The effects of mulberry leaf diet was assessed using the weighted mean difference, and the 95% confidence interval was calculated using a random-effects model. Results: In total, 18 studies that sampled 2,335 poultry and livestock were selected for analysis. Mulberry leaves improved the average daily gain and reduced the feed/meat ratio in finishing pigs, and the average daily gain and average daily feed intake in chicken. In production performance, mulberry leaves lowered the half carcass weight, slaughter rate, and loin eye area in pigs, and the slaughter rate in chickens. Regarding meat quality in pigs, mulberry leaves reduced the cooked meat percentage, shear force, crude protein, and crude ash, and increased the 24 h pH and water content. In chickens, it increased the drip loss, shear force, 45 min and 24 h pH, crude protein, and crude ash. Mulberry leaves also affect the abundances of gut microbiota, including Bacteroides, Prevotella, Megamonas, Escherichia-Shigella, Butyricicoccus, unclassified Ruminococcaceae, Bifidobacterium, Lactobacillus, and Escherichia coli in poultry and livestock. Mulberry leaves at different doses were associated with changes in antioxidant capacity in chickens, and immune organ indexes in pigs. With respect to egg quality, mulberry leaves at different doses improved the shell strength, yolk color, eggshell thickness, and eggshell weight. However, moderate doses diminished the egg yolk ratio and the egg yolk moisture content. Conclusion: In general, dietary mulberry leaves improved the growth, production performance, and immunological parameters in poultry and livestock, although the effects varied at different doses.