Browse > Article
http://dx.doi.org/10.5187/jast.2022.e71

The impact of different diets and genders on fecal microbiota in Hanwoo cattle  

Seunghyeun, Sim (Division of Animal Science, Chonnam National University)
Huseong, Lee (Division of Animal Science, Chonnam National University)
Sang, Yoon (Division of Animal Science, Chonnam National University)
Hyeonsu, Seon (Division of Animal Science, Chonnam National University)
Cheolju, Park (Division of Animal Science, Chonnam National University)
Minseok, Kim (Division of Animal Science, Chonnam National University)
Publication Information
Journal of Animal Science and Technology / v.64, no.5, 2022 , pp. 897-910 More about this Journal
Abstract
Bovine fecal microbiota is important for host health and its composition can be affected by various factors, such as diet, age, species, breed, regions, and environments. The objective of this study was to evaluate the impact of diet and gender on fecal microbiota in Korean native Hanwoo cattle. The 16S rRNA gene amplicon sequencing of fecal microbiota was conducted from 44 Hanwoo cattle divided into four groups: (1) 11 heifers fed an oat hay plus total mixed ration (TMR) diet for breeding (HOTB), (2) 11 heifers fed an early fattening TMR diet (HEFT), (3) 11 steers fed the early fattening TMR diet (SEFT), and (4) 11 steers fed the late fattening TMR diet (SLFT). Firmicutes and Bacteroidota were the first and second most dominant phyla in all the samples, respectively. The Firmicutes/Bacteroidota (F/B) ratio associated with feed efficiency was significantly greater in the SLFT group than in the other groups. At the genus level, Romboutsia, Paeniclostridium, and Turicibacter were the most abundant in the SLFT while Akkermansia, Bacteroides, and Monoglobus were the most abundant in the HOTB group. Although the same early fattening TMR diet was fed to Hanwoo heifers and steers, Marvinbryantia and Coprococcus were the most abundant in the HEFT group while Alistipes and Ruminococcus were the most abundant in the SEFT group. Shannon and Simpson diversity indices were significantly lower in the SLFT group than in the other groups. Distribution of fecal microbiota and functional genetic profiles were significantly different among the four treatment groups. The present study demonstrates that different diets and genders can affect fecal microbiota and the F/B ratio may be associated with feed efficiency in Hanwoo cattle. Our results may help develop strategies to improve gut health and productivity through manipulation of fecal microbiota using the appropriate diet considering Hanwoo cattle gender.
Keywords
16S rRNA gene amplicon sequencing; Diet; Fecal microbiota; Gender; Hanwoo;
Citations & Related Records
Times Cited By KSCI : 17  (Citation Analysis)
연도 인용수 순위
1 Bharanidharan R, Lee CH, Thirugnanasambantham K, Ibidhi R, Woo YW, Lee HG, et  al. Feeding systems and host breeds influence ruminal fermentation, methane production,  microbial diversity and metagenomic gene abundance. Front Microbiol. 2021;12:701081.  https://doi.org/10.3389/fmicb.2021.701081    DOI
2 Wells JE, Kim M, Bono JL, Kuehn LA, Benson AK. Meat Science and Muscle Biology  Symposium: Escherichia coli O157:H7, diet, and fecal microbiome in beef cattle. J Anim Sci.  2014;92:1345-55. https://doi.org/10.2527/jas.2013-7282    DOI
3 Kim M, Wells JE. A meta-analysis of bacterial diversity in the feces of cattle. Curr Microbiol.  2016;72:145-51. https://doi.org/10.1007/s00284-015-0931-6    DOI
4 Welch CB, Lourenco JM, Krause TR, Seidel DS, Fluharty FL, Pringle TD, et al. Evaluation  of the fecal bcterial communities of Angus steers with divergent feed efficiencies across the  lifespan from weaning to slaughter. Front Vet Sci. 2021;8:597405. https://doi.org/10.3389/fvets.2021.597405    DOI
5 Callaway TR, Dowd SE, Edrington TS, Anderson RC, Krueger N, Bauer N, et al. Evaluation  of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers  grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J Anim Sci.  2010;88:3977-83. https://doi.org/10.2527/jas.2010-2900    DOI
6 Kim M, Kim J, Kuehn LA, Bono JL, Berry ED, Kalchayanand N, et al. Investigation of  bacterial diversity in the feces of cattle fed different diets. J Anim Sci. 2014;92:683-94. https://doi.org/10.2527/jas.2013-6841    DOI
7 Rice WC, Galyean ML, Cox SB, Dowd SE, Cole NA. Influence of wet distillers grains diets  on beef cattle fecal bacterial community structure. BMC Microbiol. 2012;12:25. https://doi.org/10.1186/1471-2180-12-25    DOI
8 Shanks OC, Kelty CA, Archibeque S, Jenkins M, Newton RJ, McLellan SL, et al. Community  structures of fecal bacteria in cattle from different animal feeding operations. Appl Environ  Microbiol. 2011;77:2992-3001. https://doi.org/10.1128/AEM.02988-10    DOI
9 Correa PS, Jimenez CR, Mendes LW, Rymer C, Ray P, Gerdes L, et al. Taxonomy and  functional diversity in the fecal microbiome of beef cattle reared in Brazilian traditional and  semi-intensive production systems. Front Microbiol. 2021;12:768480. https://doi.org/10.3389/fmicb.2021.768480    DOI
10 Lourenco JM, Welch CB, Krause TR, Wieczorek MA, Fluharty FL, Rothrock MJ, et  al. Fecal microbiome differences in Angus steers with differing feed efficiencies during  the feedlot-finishing phase. Microorganisms. 2022;10:1128. https://doi.org/10.3390/  microorganisms10061128    DOI
11 Hagey JV, Bhatnagar S, Heguy JM, Karle BM, Price PL, Meyer D, et al. Fecal microbial  communities in a large representative cohort of California dairy cows. Front Microbiol.  2019;10:1093. https://doi.org/10.3389/fmicb.2019.01093    DOI
12 Huang S, Ji S, Wang F, Huang J, Alugongo GM, Li S. Dynamic changes of the fecal bacterial  community in dairy cows during early lactation. AMB Express. 2020;10:167. https://doi.org/10.1186/s13568-020-01106-3    DOI
13 Zhang Z, Yang L, He Y, Luo X, Zhao S, Jia X. Composition of fecal microbiota in grazing and  feedlot Angus beef cattle. Animals. 2021;11:3167. https://doi.org/10.3390/ani11113167    DOI
14 Zhao L, Li X, Atwill ER, Aly SS, Williams DR, Su Z. Dynamic changes in fecal bacterial  microbiota of dairy cattle across the production line. BMC Microbiol. 2022;22:132. https://doi.org/10.1186/s12866-022-02549-3    DOI
15 Slanzon GS, Ridenhour BJ, Moore DA, Sischo WM, Parrish LM, Trombetta SC, et al. Fecal  microbiome profiles of neonatal dairy calves with varying severities of gastrointestinal disease.  PLOS ONE. 2022;17:e0262317. https://doi.org/10.1371/journal.pone.0262317    DOI
16 Kim M, Park T, Yu Z. Metagenomic investigation of gastrointestinal microbiome in cattle.  Asian-Australas J Anim Sci. 2017;30:1515-28. https://doi.org/10.5713/ajas.17.0544    DOI
17 Henderson G, Cox F, Ganesh S, Jonker A, Young W, Global Rumen Census Collaborators, et  al. Rumen microbial community composition varies with diet and host, but a core microbiome  is found across a wide geographical range. Sci Rep. 2015;5:14567. https://doi.org/10.1038/srep14567    DOI
18 Kim M, Morrison M, Yu Z. Status of the phylogenetic diversity census of ruminal  microbiomes. FEMS Microbiol Ecol. 2011;76:49-63. https://doi.org/10.1111/j.1574-6941.2010.01029.x    DOI
19 Baek YC, Choi H, Jeong JY, Lee SD, Kim MJ, Lee S, et al. The impact of short-term acute  heat stress on the rumen microbiome of Hanwoo steers. J Anim Sci Technol. 2020;62:208-17.  https://doi.org/10.5187/jast.2020.62.2.208    DOI
20 Kim M, Park T, Jeong JY, Baek Y, Lee HJ. Association between rumen microbiota and  marbling score in Korean native beef cattle. Animals. 2020;10:712. https://doi.org/10.3390/ani10040712    DOI
21 Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and  fecal samples. Biotechniques. 2004;36:808-12. https://doi.org/10.2144/04365ST04    DOI
22 Hong SW, Park J, Jeong H, Kim M. Evaluation of the microbiome composition in particulate  matter inside and outside of pig houses. J Anim Sci Technol. 2021;63:640-50. https://doi.org/10.5187/jast.2021.e52    DOI
23 Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat  Biotechnol. 2019;37:852-7. https://doi.org/10.1038/s41587-019-0209-9    DOI
24 Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: a web-based  tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids  Res. 2017;45:W180-8. https://doi.org/10.1093/nar/gkx295    DOI
25 Kim M, Park T, Yun JI, Lim HW, Han NR, Lee ST. Investigation of age-related changes in  the skin microbiota of Korean women. Microorganisms. 2020;8:1581. https://doi.org/10.3390/microorganisms8101581    DOI
26 Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic  biomarker discovery and explanation. Genome Biol. 2011;12:R60. https://doi.org/10.1186/gb2011-12-6-r60    DOI
27 Hammer O, Harper DA, Ryan PD. PAST: paleontological statistics software package for  education and data analysis. Palaeontol Electronica. 2001;4:9. 
28 Wen C, Yan W, Mai C, Duan Z, Zheng J, Sun C, et al. Joint contributions of the gut  microbiota and host genetics to feed efficiency in chickens. Microbiome. 2021;9:126. https://doi.org/10.1186/s40168-021-01040-x    DOI
29 Min BR, Gurung N, Shange R, Solaiman S. Potential role of rumen microbiota in altering  average daily gain and feed efficiency in meat goats fed simple and mixed pastures using  bacterial tag-encoded FLX amplicon pyrosequencing. J Anim Sci. 2019;97:3523-34. https://doi.org/10.1093/jas/skz193    DOI
30 Zinn RA, Barreras A, Owens FN, Plascencia A. Performance by feedlot steers and heifers: daily  gain, mature body weight, dry matter intake, and dietary energetics. J Anim Sci. 2008;86:2680-9. https://doi.org/10.2527/jas.2007-0561    DOI
31 Sasi Jyothsna TS, Tushar L, Sasikala C, Ramana CV. Paraclostridium benzoelyticum gen.  nov., sp. nov., isolated from marine sediment and reclassification of Clostridium bifermentans  as Paraclostridium bifermentans comb. nov. Proposal of a new genus Paeniclostridium gen.  nov. to accommodate Clostridium sordellii and Clostridium ghonii. Int J Syst Evol Microbiol.  2016;66:1268-74. https://doi.org/10.1099/ijsem.0.000874    DOI
32 Gerritsen J, Fuentes S, Grievink W, van Niftrik L, Tindall BJ, Timmerman HM, et al.  Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal  tract of a rat, and proposal for the reclassification of five closely related members of the genus  Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter  gen. nov. and Asaccharospora gen. nov. Int J Syst Evol Microbiol. 2014;64:1600-16. https://doi.org/10.1099/ijs.0.059543-0    DOI
33 Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp.  nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54:1469-76. https://doi.org/10.1099/ijs.0.02873-0    DOI
34 Greening RC, Leedle JAZ. Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp.  nov.: acetogenic bacteria from the bovine rumen. Arch Microbiol. 1989;151:399-406. https://doi.org/10.1007/BF00416597    DOI
35 Kim CC, Kelly WJ, Patchett ML, Tannock GW, Jordens Z, Stoklosinski HM, et al.  Monoglobus pectinilyticus gen. nov., sp. nov., a pectinolytic bacterium isolated from human  faeces. Int J Syst Evol Microbiol. 2017;67:4992-8. https://doi.org/10.1099/ijsem.0.002395    DOI
36 Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, et al. Evaluation  of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded  FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 2008;8:125. https://doi.org/10.1186/1471-2180-8-125    DOI
37 Myer PR, Wells JE, Smith TPL, Kuehn LA, Freetly HC. Cecum microbial communities  from steers differing in feed efficiency. J Anim Sci. 2015;93:5327-40. https://doi.org/10.2527/jas.2015-9415    DOI
38 Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, et al. Blautia-a new functional genus with  potential probiotic properties? Gut Microbes. 2021;13:1875796. https://doi.org/10.1080/19490976.2021.1875796    DOI
39 Wolin MJ, Miller TL, Collins MD, Lawson PA. Formate-dependent growth and  homoacetogenic fermentation by a bacterium from human feces: description of Bryantella   formatexigens gen. nov., sp. nov. Appl Environ Microbiol. 2003;69:6321-6. https://doi.org/10.1128/AEM.69.10.6321-6326.2003    DOI
40 Li Y, Ma N, Ren L, Wang M, Hu L, Shen Y, et al. Microbiome-metabolome responses in  ruminal content and feces of lactating dairy cows with N-carbamylglutamate supplementation  under heat stress. Front Vet Sci. 2022;9:902001. https://doi.org/10.3389/fvets.2022.902001    DOI
41 Lee SH, Park BH, Sharma A, Dang CG, Lee SS, Choi TJ, et al. Hanwoo cattle: origin,  domestication, breeding strategies and genomic selection. J Anim Sci Technol. 2014;56:2.https://doi.org/10.1186/2055-0391-56-2    DOI
42 Hao Y, Gong Y, Huang S, Ji S, Wang W, Wang Y, et al. Effects of age, diet CP, NDF, EE,  and starch on the rumen bacteria community and function in dairy cattle. Microorganisms.  2021;9:1788. https://doi.org/10.3390/microorganisms9081788    DOI
43 Pessione E. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows.  Front Cell Infect Microbiol. 2012;2:86. https://doi.org/10.3389/fcimb.2012.00086   DOI