DOI QR코드

DOI QR Code

Effects of dietary mulberry leaves on growth, production performance, gut microbiota, and immunological parameters in poultry and livestock: a systematic review and meta-analysis

  • Received : 2023.10.26
  • Accepted : 2024.01.08
  • Published : 2024.06.01

Abstract

Objective: This study aimed to assess the effects of dietary mulberry leaves on the growth, production performance, gut microbiota, and immunological parameters of poultry and livestock. Methods: The PubMed, Embase, and Scopus databases were systematically analyzed to identify pertinent studies up to December 2022. The effects of mulberry leaf diet was assessed using the weighted mean difference, and the 95% confidence interval was calculated using a random-effects model. Results: In total, 18 studies that sampled 2,335 poultry and livestock were selected for analysis. Mulberry leaves improved the average daily gain and reduced the feed/meat ratio in finishing pigs, and the average daily gain and average daily feed intake in chicken. In production performance, mulberry leaves lowered the half carcass weight, slaughter rate, and loin eye area in pigs, and the slaughter rate in chickens. Regarding meat quality in pigs, mulberry leaves reduced the cooked meat percentage, shear force, crude protein, and crude ash, and increased the 24 h pH and water content. In chickens, it increased the drip loss, shear force, 45 min and 24 h pH, crude protein, and crude ash. Mulberry leaves also affect the abundances of gut microbiota, including Bacteroides, Prevotella, Megamonas, Escherichia-Shigella, Butyricicoccus, unclassified Ruminococcaceae, Bifidobacterium, Lactobacillus, and Escherichia coli in poultry and livestock. Mulberry leaves at different doses were associated with changes in antioxidant capacity in chickens, and immune organ indexes in pigs. With respect to egg quality, mulberry leaves at different doses improved the shell strength, yolk color, eggshell thickness, and eggshell weight. However, moderate doses diminished the egg yolk ratio and the egg yolk moisture content. Conclusion: In general, dietary mulberry leaves improved the growth, production performance, and immunological parameters in poultry and livestock, although the effects varied at different doses.

Keywords

Acknowledgement

This study was supported by Special fund project for central guidance of local scientific and technological development (YDZX2021073), Yantai Science and Technology Innovation Development Plan Project (2023JCYJ105), Shandong Sericulture Research Institute's "Cocoon Breaking" Support Fund Project (FC202303), Yantai Comprehensive Test Station of National Silkworm Industry Technology System (CARS-18-SYZ08) and Shandong Modern Agricultural Industrial Technology System Sericulture Industry Innovation Team Project (SDAIT-8-09).

References

  1. Li Y, Liu Y, Li F, et al. Effects of dietary ramie powder at various levels on growth performance, antioxidative capacity and fatty acid profile of finishing pigs. J Anim Physiol Anim Nutr (Berl) 2019;103:564-73. https://doi.org/10.1111/jpn.13031
  2. Yulistiani D, Jelan ZA, Liang JB, Yaakub H, Abdullah N. Effects of supplementation of mulberry (Morus alba) foliage and urea-rice bran as fermentable energy and protein sources in sheep fed urea-treated rice straw based diet. Asian-Australas J Anim Sci 2015;28:494-501. https://doi.org/10.5713/ajas.14.0406
  3. Hafez HM, Attia YA. Challenges to the poultry industry: current perspectives and strategic future after the COVID-19 outbreak. Front Vet Sci 2020;7:516. https://doi.org/10.3389/fvets.2020.00516
  4. Ayasan T, Baylan M. Use of mulberry leaf in animal nutrition. Turk J Agric Food Sci Technol 2016;4:504-7. https://doi.org/10.24925/turjaf.v4i6.504-507.682
  5. Kandylis K, Hadjigeorgiou I, Harizanis P. The nutritive value of mulberry leaves (Morus alba) as a feed supplement for sheep. Trop Anim Health Prod 2009;41:17-24. https://doi.org/10.1007/s11250-008-9149-y
  6. Jetana T, Vongpipatana C, Usawang S, Thongruay S. The use of tropical protein-rich leaves as supplements to Thai swamp buffalo receiving a basal diet of rice straw and treated leucaena (Leucaena leucocephala). Trop Anim Health Prod 2011;43:57-67. https://doi.org/10.1007/s11250-010-9654-7
  7. Wang C, Yang F, Wang Q, et al. Nutritive value of mulberry leaf meal and its effect on the performance of 35-70-day-old geese. J Poult Sci 2017;54:41-6. https://doi.org/10.2141/jpsa.0160070
  8. Zhou B, Meng Q, Ren LP, Shi FH, Wei Z, Zhou ZM. Evaluation of chemical composition, in situ degradability and in vitro gas production of ensiled and sun-dried mulberry pomace. J Anim Feed Sci 2012;21:188-97. https://doi.org/10.22358/jafs/66063/2012
  9. Zhou Z, Zhou B, Ren L, Meng Q. Effect of ensiled mulberry leaves and sun-dried mulberry fruit pomace on finishing steer growth performance, blood biochemical parameters, and carcass characteristics. PLoS One 2014;9:e85406. https://doi.org/10.1371/journal.pone.0085406
  10. Salem AZM, Kunst CR, Jose S. Alternative animal feeds from agroforestry plants. Agrofor Syst 2020;94:1133-8. https://doi.org/10.1007/s10457-020-00525-2
  11. Lin WC, Lee MT, Chang SC, et al. Effects of mulberry leaves on production performance and the potential modulation of antioxidative status in laying hens. Poult Sci 2017;96:1191-203. https://doi.org/10.3382/ps/pew350
  12. Liu Y, Li Y, Xiao Y, et al. Mulberry leaf powder regulates antioxidative capacity and lipid metabolism in finishing pigs. Anim Nutr 2021;7:421-9. https://doi.org/10.1016/j.aninu.2020.08.005
  13. Chen Y, Ni J, Li H. Effect of green tea and mulberry leaf powders on the gut microbiota of chicken. BMC Vet Res 2019;15:77. https://doi.org/10.1186/s12917-019-1822-z
  14. Chen G, Su Y, Cai Y, He L, Yang G. Comparative transcriptomic analysis reveals beneficial effect of dietary mulberry leaves on the muscle quality of finishing pigs. Vet Med Sci 2019;5:526-35. https://doi.org/10.1002/vms3.187
  15. Zhao X, Yang R, Bi Y, et al. Effects of dietary supplementation with mulberry (Morus alba L.) leaf polysaccharides on immune parameters of weanling pigs. Animals (Basel) 2019;10:35. https://doi.org/10.3390/ani10010035
  16. Liu Y, Li Y, Peng Y, et al. Dietary mulberry leaf powder affects growth performance, carcass traits and meat quality in finishing pigs. J Anim Physiol Anim Nutr (Berl) 2019;103:1934-45. https://doi.org/10.1111/jpn.13203
  17. Li M, Hassan FU, Tang Z, et al. Mulberry leaf flavonoids improve milk production, antioxidant, and metabolic status of water buffaloes. Front Vet Sci 2020;7:599. https://doi.org/10.3389/fvets.2020.00599
  18. Hou Q, Qian Z, Wu P, Shen M, Li L, Zhao W. 1-Deoxynojirimycin from mulberry leaves changes gut digestion and microbiota composition in geese. Poult Sci 2020;99:5858-66. https://doi.org/10.1016/j.psj.2020.07.048
  19. Sun H, Luo Y, Zhao F, et al. The effect of replacing wildrye hay with mulberry leaves on the growth performance, blood metabolites, and carcass characteristics of sheep. Animals (Basel) 2020;10:2018. https://doi.org/10.3390/ani10112018
  20. Chen Z, Xie Y, Luo J, et al. Dietary supplementation with Moringa oleifera and mulberry leaf affects pork quality from finishing pigs. J Anim Physiol Anim Nutr (Berl) 2021;105:72-9. https://doi.org/10.1111/jpn.13450
  21. Ding Y, Jiang X, Yao X, et al. Effects of feeding fermented mulberry leaf powder on growth performance, slaughter performance, and meat quality in chicken broilers. Animals (Basel) 2021;11:3294. https://doi.org/10.3390/ani11113294
  22. So-In C, Sunthamala N. The effects of mulberry (Morus alba Linn.) leaf supplementation on growth performance, blood parameter, and antioxidant status of broiler chickens under high stocking density. Vet World 2022;15:2715-24. https://doi.org/10.14202/vetworld.2022.2715-2724
  23. Zhang B, Wang Z, Huang C, et al. Positive effects of mulberry leaf extract on egg quality, lipid metabolism, serum biochemistry, and antioxidant indices of laying hens. Front Vet Sci 2022;9:1005643. https://doi.org/10.3389/fvets.2022.1005643
  24. Wang S, Tang C, Li J, et al. The effects of dietary inclusion of mulberry leaf powder on growth performance, carcass traits and meat quality of tibetan pigs. Animals (Basel) 2022;12:2743. https://doi.org/10.3390/ani12202743
  25. Ma J, Ma H, Liu S, et al. Effect of mulberry leaf powder of varying levels on growth performance, immuno-antioxidant status, meat quality and intestinal health in finishing pigs. Antioxidants (Basel) 2022;11:2243. https://doi.org/10.3390/antiox11112243
  26. Long Y, Han Y, Zhao Y, et al. Effect of mulberry leaf TMR on growth performance, meat quality and expression of meat quality master genes (ADSL, H-FABP) in crossbred black goats. Foods 2022;11:4032. https://doi.org/10.3390/foods11244032
  27. Huang Z, Lv Z, Dai H, et al. Dietary mulberry-leaf flavonoids supplementation improves liver lipid metabolism and ovarian function of aged breeder hens. J Anim Physiol Anim Nutr (Berl) 2022;106:1321-32. https://doi.org/10.1111/jpn.13658
  28. Yang C, Tang XW, Duan YY, et al. Effect of mulberry leaf powder on reproductive performance, serum indexes and milk amino acid composition in lactating sows. J Anim Physiol Anim Nutr (Berl) 2022;106:1258-67. https://doi.org/10.1111/jpn.13668
  29. Song M, Wang C, Yu M, et al. Mulberry leaf extract improves intestinal barrier function and displays beneficial effects on colonic microbiota and microbial metabolism in weaned piglets. J Sci Food Agric 2023;103:1561-8. https://doi.org/10.1002/jsfa.12254
  30. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097
  31. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996;17:1-12. https://doi.org/10.1016/0197-2456(95)00134-4
  32. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88. https://doi.org/10.1016/0197-2456(86)90046-2
  33. Ades AE, Lu G, Higgins JPT. The interpretation of randomeffects meta-analysis in decision models. Med Decis Making 2005;25:646-54. https://doi.org/10.1177/0272989X05282643
  34. Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-analyses. In: Higgins JPT, Green S, editors. Cochrane Handbook for systematic reviews of interventions 5.0.1. Oxford, UK: The Cochrane Collaboration: 2008; chap 9.
  35. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-60. https://doi.org/10.1136/bmj.327.7414.557
  36. Yu A, Tang C, Wang S, et al. Effects of dietary supplementation with mulberry leaf powder on the growth performance, lipid metabolism parameters, immunity indicators, and gut microbiota of dogs. Metabolites 2023;13:918. https://doi.org/10.3390/metabo13080918
  37. Gan L, Inamura Y, Shimizu Y, et al. A basic study of the effects of mulberry leaf administration to healthy C57BL/6 mice on gut microbiota and metabolites. Metabolites 2023;13:1003. https://doi.org/10.3390/metabo13091003
  38. Aziz-Aliabadi F, Noruzi H, Hassanabadi A. Effect of different levels of green tea (Camellia sinensis) and mulberry (Morus alba) leaves powder on performance, carcass characteristics, immune response and intestinal morphology of broiler chickens. Vet Med Sci 2023;9:1281-91. https://doi.org/10.1002/vms3.1133
  39. Shan Y, Sun C, Li J, et al. Characterization of purified mulberry leaf glycoprotein and its immunoregulatory effect on cyclophosphamide-treated mice. Foods 2022;11:2034. https://doi.org/10.3390/foods11142034
  40. He X, Fang J, Ruan Y, et al. Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): a review. Food Chem 2018;245:899-910. https://doi.org/10.1016/j.foodchem.2017.11.084
  41. Tian S, Wang M, Liu C, Zhao H, Zhao B. Mulberry leaf reduces inflammation and insulin resistance in type 2 diabetic mice by TLRs and insulin Signalling pathway. BMC Complement Altern Med 2019;19:326. https://doi.org/10.1186/s12906-019-2742-y
  42. Sunder A, Wilkens M, Bohm V, Liebert F. Egg yolk colour in organic production as affected by feeding - consequences for farmers and consumers. Food Chem 2022;382:131854. https://doi.org/10.1016/j.foodchem.2021.131854