• Title/Summary/Keyword: Bacterial vector

Search Result 170, Processing Time 0.024 seconds

Targeting Orthotopic Glioma in Mice with Genetically Engineered Salmonella typhimurium

  • Wen, Min;Jung, Shin;Moon, Kyung-Sub;Jiang, Shen Nan;Li, Song-Yuan;Min, Jung-Joon
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.3
    • /
    • pp.131-135
    • /
    • 2014
  • Objective : With the growing interests of bacteria as a targeting vector for cancer treatment, diverse genetically engineered Salmonella has been reported to be capable of targeting primary or metastatic tumor regions after intravenous injection into mouse tumor models. The purpose of this study was to investigate the capability of the genetically engineered Salmonella typhimurium (S. typhimurium) to access the glioma xenograft, which was monitored in mouse brain tumor models using optical bioluminescence imaging technique. Methods : U87 malignant glioma cells (U87-MG) stably transfected with firefly luciferase (Fluc) were implanted into BALB/cAnN nude mice by stereotactic injection into the striatum. After tumor formation, attenuated S. typhimurium expressing bacterial luciferase (Lux) was injected into the tail vein. Bioluminescence signals from transfected cells or bacteria were monitored using a cooled charge-coupled device camera to identify the tumor location or to trace the bacterial migration. Immunofluorescence staining was also performed in frozen sections of mouse glioma xenograft. Results : The injected S. typhimurium exclusively localized in the glioma xenograft region of U87-MG-bearing mouse. Immunofluorescence staining also demonstrated the accumulation of S. typhimurium in the brain tumors. Conclusion : The present study demonstrated that S. typhimurium can target glioma xenograft, and may provide a potentially therapeutic probe for glioma.

Immunization with Brucella abortus recombinant proteins protects BALB/c mice from Brucella abortus 544 infection

  • Arayan, Lauren Togonon;Tran, Xuan Ngoc Huy;Reyes, Alisha Wehdnesday Bernardo;Huynh, Tan Hop;Vu, Hai Son;Min, WonGi;Lee, Hu Jang;Kim, Suk
    • Journal of Preventive Veterinary Medicine
    • /
    • v.42 no.4
    • /
    • pp.157-162
    • /
    • 2018
  • This study evaluated the protective effects of a combination of eight B. abortus recombinant proteins that were cloned and expressed into a pMal vector system and $DH5{\alpha}$: nucleoside diphosphate kinase (rNdk), 50S ribosomal protein (rL7/L12), malate dehydrogenase (rMDH), DNA starvation/stationary phase protection protein (rDps), elongation factor (rTsf), arginase (rRocF), superoxide dismutase (rSodC), and riboflavin synthase subunit beta (rRibH). The proteins were induced, purified, and administered intraperitoneally into BALB/c mice. The mice were immunized three times at weeks 0, 2, and 5 and then infected intraperitoneally (IP) with $5{\times}10^4CFU$ of virulent B. abortus 544 one week after the last immunization. The spleens were collected and the bacterial burden was evaluated at four weeks post-infection. The results showed that this combination produced a significant reduction of the bacterial burden in the spleen with a log reduction of 1.01 compared to the PBS group. Cytokine analysis revealed induction of the cell-mediated immune response in that TNF (tumor necrosis factor) and proinflammatory cytokines IL-6 (Interleukin 6) and MCP-1 (macrophage chemoattractant protein-1) were elevated significantly. In summary, vaccination with a combination of eight different proteins induced a significant protective effect indicative of a cell mediated immune response.

Cutaneous Myiasis Associated with Tick Infestations in a Dog (진드기에 감염된 개의 피부 구더기증 1예)

  • Choi, Jungku;Kim, Hanjong;Na, Jiwoong;Kim, Seong-hyun;Park, Chul
    • Journal of Veterinary Clinics
    • /
    • v.32 no.5
    • /
    • pp.473-475
    • /
    • 2015
  • A 12-year-old intact male, Alaskan Malamute dog, which lives in the countryside, was presented with inflammation and pain around perineal areas. Thorough examination revealed maggots and punched-out round holes lesion around the perineal region. Complete blood counts (CBC) and serum biochemical examinations showed no remarkable findings except mild anemia and mild thrombocytosis. The diagnosis was easily done, based on clinical signs and maggots identification. Cleaning with chlorhexidine, povidone-iodine lavage and hair clipping away from the lesions were performed soon after presentation. SNAP 4Dx Test (IDEXX Laboratories, Westbrook, ME, USA) was performed to rule out other vector-borne diseases since the ticks were found on the clipped area and vector-borne pathogens. The test result was negative. The dog in this case was treated with ivermectin (300 mcg/kg SC) one time. Also, treatments with amoxicillin clavulanate (20 mg/kg PO, BID) was established to prevent secondary bacterial infections. Then, myiasis resolved with 2 weeks and the affected area was healed.

Purification of Extracellular Agarase from Marine Bacterium (Pseudosmonas sp. W7) and Molecular Cloning of the Agarase Gene (해양미생물 Pseudomonas sp. W7이 생산하는 Extracellular Agarase의 정제 및 Gene Cloning)

  • 공재열;배승권
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.37-45
    • /
    • 1996
  • Marine bacterial strain, highly effective agar degrading, was isolated from south sea of Korea and was identified as Pseudomonas sp. This strain was named Halophilic Pseudomonas sp. W7 and accumulated an extracellular agarase which showed a high level of enzyme activity in the presence of agar and agarose. This extracellular agarase was purified by anion-exchange chromatography and gel filtration. Purified agarase showed a single protein band upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis and its molecular weight was estimated to be about 89KDa. The agarase gene was cloned into Escherichia coli JM83 using the plasmid vector pUC19. DNA fragments(3.7, 3.0Kb) of Hind III-digested chromosomal DNA of Pseudomonas sp. W7 was inserted into the Hind III site of pUC19. Selected transformants, E. coli JM83/pSWl 000000and E. coli JM83/pSW3, produced agarase and this agarase was accumulated In the cytoplasmic space.

  • PDF

Suppression of Ceramide-induced Cell Death by Hepatitis C Virus Core Protein

  • Kim, Jung-Su;Ryu, Ji-Yoon;Hwang, Soon-Bong;Lee, Soo-Young;Choi, Soo-Young;Park, Jin-Seu
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.192-198
    • /
    • 2004
  • The hepatitis C virus (HCV) core protein is believed to be one of viral proteins that are capable of preventing virus-infected cell death upon various stimuli. But, the effect of the HCV core protein on apoptosis that is induced by various stimuli is contradictory. We examined the possibility that the HCV core protein affects the ceramide-induced cell death in cells expressing the HCV core protein through the sphingomyelin pathway. Cell death that is induced by $C^2$-ceramide and bacterial sphingomyelinase was analyzed in 293 cells that constitutively expressed the HCV core protein and compared with 293 cells that were stably transfected only with the expression vector. The HCV core protein inhibited the cell death that was induced by these reagents. The protective effects of the HCV core protein on ceramide-induced cell death were reflected by the reduced expression of $p21^{WAF1/Cip1/Sid1}$ and the sustained expression of the Bcl-2 protein in the HCV core-expressing cells with respect to the vector-transfected cells. These results suggest that the HCV core protein in 293 cells plays a role in the modulation of the apoptotic response that is induced by ceramide. Also, the ability of the HCV core protein to suppress apoptosis might have important implications in understanding the pathogenesis of the HCV infection.

Salmonella vector induces protective immunity against Lawsonia and Salmonella in murine model using prokaryotic expression system

  • Sungwoo Park;Eunseok Cho;Amal Senevirathne;Hak-Jae Chung;Seungmin Ha;Chae-Hyun Kim;Seogjin Kang;John Hwa Lee
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.4.1-4.14
    • /
    • 2024
  • Background: Lawsonia intracellularis is the causative agent of proliferative enteropathy and is associated with several outbreaks, causing substantial economic loss to the porcine industry. Objectives: In this study, we focused on demonstrating the protective effect in the mouse model through the immunological bases of two vaccine strains against porcine proliferative enteritis. Methods: We used live-attenuated Salmonella Typhimurium (ST) secreting two selected immunogenic LI antigens (Lawsonia autotransporter A epitopes and flagellin [FliC]-peptidoglycan-associated lipoprotein-FliC) as the vaccine carrier. The constructs were cloned into a Salmonella expression vector (pJHL65) and transformed into the ST strain (JOL912). The expression of immunogenic proteins within Salmonella was evaluated via immunoblotting. Results: Immunizing BALB/c mice orally and subcutaneously induced high levels of LI-specific systemic immunoglobulin G and mucosal secretory immunoglobulin A. In immunized mice, there was significant upregulation of interferon-γ and interleukin-4 cytokine mRNA and an increase in the subpopulations of cluster of differentiation (CD) 4+ and CD 8+ T lymphocytes upon splenocytes re-stimulation with LI antigens. We observed significant protection in C57BL/6 mice against challenge with 106.9 times the median tissue culture infectious dose of LI or 2 × 109 colony-forming units of the virulent ST strain. Immunizing mice with either individual vaccine strains or co-mixture inhibited bacterial proliferation, with a marked reduction in the percentage of mice shedding Lawsonia in their feces. Conclusions: Salmonella-mediated LI gene delivery induces robust humoral and cellular immune reactions, leading to significant protection against LI and salmonellosis.

Overexpression of rice NAC transcription factor OsNAC58 on increased resistance to bacterial leaf blight (전사인자 OsNAC58 과발현을 통한 벼 흰잎마름병 저항성 증진 벼)

  • Park, Sang Ryeol;Kim, Hye Seon;Lee, Kyong Sil;Hwang, Duk-Ju;Bae, Shin-Chul;Ahn, Il-Pyung;Lee, Seo Hyun;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Bacterial blight in rice caused by Xanthomonas oryzae pv. oryzae (Xoo) greatly reduces the growth and productivity of this important food crop. Therefore, we sought to increase the resistance of rice to bacterial blight by using a NAC (NAM, ATAF, and CUC) transcription factor, one of the plant-specific transcription factors that is known to be involved in biotic/abiotic stress resistance. By isolating the OsNAC58 gene from rice and analyzing its biological functions related to Xoo resistance, phylogenetic analysis showed that OsNAC58 belongs to group III. To investigate the biological relationship between bacterial leaf blight (BLB) and OsNAC58 in rice, we constructed a vector for overexpression in rice and generated transgenic rice. The expression analysis resulting from use of RT-PCR showed that OsNAC58-overexpressed transgenic rice exhibited higher levels of OsNAC58 expression than wild types. Further, subcellular localization analysis using rice protoplasts showed that the 35S/OsNAC58-SmGFP fusion protein was localized in the nuclei. Thirteen OsNAC58-overexpressed transgenic rice lines, with high expression levels of OsNAC58, showed more resistant to Xoo than did the wild types. Together, these results suggest that the OsNAC58 gene of rice regulates the rice disease resistance mechanism in the nucleus upon invasion of the rice bacterial blight pathogen Xoo.

Effects of Salt Concentration on Motility and Expression of Flagellin Genes in the Fish Pathogen Edwardsiella tarda (염 농도가 어류 병원체 Edwardsiella tarda의 운동성과 편모발현에 미치는 영향)

  • Yu, Jong-Earn;Park, Jun-Mo;Kang, Ho-Young
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1487-1493
    • /
    • 2011
  • E. tarda, a fish pathogen, can survive in seawater under relatively high salt conditions as well as in fish under physiological salt conditions. Bacterial growth under different salt concentrations may influence the expression of genes involved in bacterial structure and physiology. The growth rate of E. tarda culture in high salt (3.5% NaCl) was similar to that in low salt (1.0% NaCl, physiological salt concentration). Interestingly, the strain moved much faster in low salt conditions than in high salt conditions. Electron microscopic observation demonstrated that the bacterial cells grown in high salt had less or no flagellation. Obvious flagellation was observed in the parental strain E. tarda CK41 grown in low-salt condition. Two putative genes coding flagellin were identified in the E. tarda genome sequences. The amino acid sequence comparison of each gene revealed 93% identities. A flagellin gene was PCR amplified and cloned into a cloning vector. Using an E. coli protein expression system, a part of flagellin protein was overexpressed. Using the purified protein, an anti-flagellin antibody was raised in the rabbit. Immunoblot analyses with flagellin specific antibody demonstrated that E. tarda CK41 expressed falgellin in low salt conditions, which is consistent with the results seen in motility assay and microscopic observation. This is the first report of salt regulated flagella expression in E. tarda.

Generation of antibodies against N-terminus fragment of AgI/II protein from Streptococcus mutans GS-5 (연쇄상구균(Streptococcus mutans GS-5)의 항원단백질 AgI/II의 N-terminus절편에 대한 항체형성)

  • Han, Ji-Hye;Baik, Byeong-Ju;Yang, Yeon-Mi;Park, Jeong-Yeol;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.3
    • /
    • pp.401-410
    • /
    • 2006
  • Dental caries results from localized demineralization of tooth enamel by acids of bacterial origin produced from the fermentation of dietary sugars. A group of related oral bacteria, collectively known as mutans streptococci, are implicated as the primary etiological agents of human caries. Within this group, Streptococcus mutans has been known as a causative agent for dental caries. As well as acid production yielding the demineralization of tooth enamel, adherence and colonization of S. mutans to the teeth are also important for their virulence Cell-surface fibrillar proteins, which mediate adherence to the salivary pellicle are virulence components of mutans streptococci, and primary candidates for a human caries vaccine. Here we report that the AgI/II gene from S. mutans GS-5 were cloned by PCR amplification of the bacterial chromosomal DNA and the integrity of cloned genes were confirmed by nucleotide sequencing. Sequence analyses showed the sequence alignment of 280 nucleotides between the cloned AgI/II and the reported sequence of S. mutans GS-5 showed the perfect match The cloned genes which signal nucleotide was truncated, were transferred into bacterial expression vector and the recombinant proteins were purified as His-tag fusion proteins In order to generate polyclonal antibodies against the recombinant proteins, AgI/II mr, some $100{\mu}g$ of the proteins was injected into mice three times. It can be used for an effective vaccine production to prevent dental caries caused by pathogenic S. mutans.

  • PDF

Development of a Monitoring System for Water-borne Bacteria by a Molecular Technique, PCR-RFLP-sequence Analysis

  • Lee, Ji-Young;Jeong, Eun-Young;Lee, Kyu-sang;Seul-Ju;Kim, Jong-Bae;Kang, Joon-Wun;Lee, Hye-Young
    • Biomedical Science Letters
    • /
    • v.9 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • Since water borne infection causes acute diseases and results in spread of diseases by secondary infection, the prevention is very important. Therefore, it is necessary to have a method that is rapid and effective to monitor pathogenic bacteria in drinking water. In this study, we employed a systematic method, Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) analysis, to develop an effective monitoring system for possible bacterial contaminants in drinking water. For this purpose, PCR primers were derived from 992 bp region of the 16s rRNA gene that is highly conserved through the different species of prokaryotes. To test whether the PCR primers designed are indeed useful for detecting all the possible microbial contaminants in the water, the primers were used to amplify 16s rRNA regions of different microbial water-borne pathogens such as E. coli, Salmonella, Yersinia, Listeria, and Staphylococcus. As expected, all of tested microorganisms amplified expected size of PCR products indicating designed PCR primers for 16s rRNA indeed can be useful to amplify all different microbial water-borne pathogens in the water. Furthermore, to test whether these 16s rRNA based PCR primers can detect bacterial populations present in the water, water samples taken from diverse sources, such as river, tap, and sewage, were used for amplification. PCR products were for then subjected for cloning into a T-vector to generate a library containing 16s rRNA sequences from various bacteria. With cloned PCR products, RFLP analysis was done using PCR products digested with restriction enzyme such as Hae III to obtain species-specific RFLP profiles. After PCR-RFLP, the bacterial clones which showed the same RFLP profiles were regarded as the same ones, and the clones which showed distinctive RFLP profiles were subsequently subjected for sequence analysis for species identification. By this PCR-RFLP analysis, we were able to reveal diverse populations of bacteria living in water. In brief, in unsterilized natural river water, over 60 different species of bacteria were found. On the other hand, no PCR products were detected in drinking tap-water. The results from this study clearly indicate that the PCR-RFLP-sequence analysis can be a useful method for monitoring diverse, perhaps pathogenic bacteria contaminated in water in a rapid fashion.

  • PDF