• Title/Summary/Keyword: Bacterial population

Search Result 525, Processing Time 0.032 seconds

Relationship between the Population of Ralstonia solanacearum in Soil and the Incidence of Bacterial Wilt in the Naturally Infested Tobacco Fields

  • Chung, Yun-Hwa;Yu, Yun-Hyun;Kang, Yue-Gyu
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.289-292
    • /
    • 2004
  • The population of Ralstonia solanacearum (Rs) in soil is very important as a primary inoculum source of bacterial wilt in tobacco fields. To investigate the population of Rs, physical properties and chemical components during the tobacco growing season, soil samples were taken from the fifteen fields which were located in the flue-cured tobacco growing area, Ansung, Kyunggi province and Wonju, Kangwon province. Two fields of the fifteen were bacterial wilt free. Six fields had less than 10% plants being diseased and seven over 10%. The Rs population level determined by using SMSA medium generally showed an up-and-down pattern being low in May, high in Jun and July and low in August. The soil population in May and June showed a positive correlation with the incidence of bacterial wilt (r=0.571$^*$, r=0.688$^{**}$), but P$_2O_5$, content of soil was negatively correlated with the disease incidence (r=-0.539$^*$). These results suggest that Rs population in soil examined in May or in June, and the P$_2O_5$ content in soil should be key factors to determine the bacterial wilt potential of tobacco fields.

Study on Controlling Factors for Soil Structure in Creation of Man-made Tidal Flat (인공 간석지 창출에 있어서 토양구조를 결정하는 인자에 관한 연구)

  • 이정규;최영찬
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.587-592
    • /
    • 1999
  • The purpose of this study was to identify the controlling factors to construct tidal flat ecosystems having similar characteristics as natural ones. We transplanted the soil in a constructed tidal flat to a natural one and vice versa. Parameters monitored after these transplantations were silt content, organic matter, bacterial population and oxidation-reduction potential. Moreover, the relationship among silt content, organic matter and bacterial population was investigated by laboratory column experiment. The silt content, organic matter, bacterial population and vertical profile of oxidation-reduction potential in the soil transplanted from the constructed tidal flat to the natural one changed to similar values to those in the natural one. On the contrary, all the parameters for the soil transplanted from the natural tidal flat to the constructed one changed to similar values as those in the constructed one. The silt contents in thses two transplanted solis were in proportion to the organic carbon contents and bacterial population. Similarly, the bacterial population in laboratory column experiment increased with the increase in silt and organic matter contents. It seemed to be important to select a place to enhance accumulative of silt and/or to maintain the silt content by hydrodynamic control of seawater in order to construct a tidal flat having similar characteristics as natural one.

  • PDF

Characterization of Algal-Bacterial Ecological Interaction and Nutrients Removal Under Municipal Wastewater Condition (실제 하수조건에서 조류-세균 복합군집의 생태적 상호작용 및 영양염류 제거 특성 규명)

  • Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.314-324
    • /
    • 2011
  • Algal biomass cultivated by wastewater is potentially useful resource for biodiesel production. However, little is known about algal nutrient metabolism and microbial interaction with bacteria under real municipal wastewater condition. In this work, we characterized nitrogen and phosphorus removals of municipal wastewater by a representative wastewater-growing algal population. Ankistrodesmus gracilis SAG 278-2, and analyzed its ecological interaction with wastewater bacterial communities. Compared to wastewater sludge itself, algal-bacterial co-culture improved nutrient removal. According to bacterial community analysis with 16S rRNA genes, a selective and dominant growth of a Unclassified Alcaligenaceae population resulted from algal growth in the algal-bacterial co-culture. The selectively stimulated bacterial population is phylogenetically close to Alcaligenes faecalis subsp. 5659-H, which is known to be co-present interact with algae in aquatic environment. These findings suggest that algal growth/metabolism may have effects on selection of a specific bacterial population in algal-bacterial co-cultures that can efficiently remove nutrients from municipal wastewater.

Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage

  • Pedraza, Luz Adriana;Bautista, Jessica;Uribe-Velez, Daniel
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.393-402
    • /
    • 2018
  • Rice world production is affected due to the growing impact of diseases such as bacterial panicle blight, produced by Burkholderia glumae. The pathogen-induced symptoms include seedling rot, grain rot and leafsheath browning in rice plants. It is currently recognized the entrance of this pathogen to the plant, from infected seeds and from environmental sources of the microorganism. However, it is still not fully elucidated the dynamics and permanence of the pathogen in the plant, from its entry until the development of disease symptoms in seedlings or panicles. In this work it was evaluated the infection of B. glumae rice plants, starting from inoculated seeds and substrates, and its subsequent monitoring after infection. Various organs of the plant during the vegetative stage and until the beginning of the reproductive stage, were evaluated. In both inoculation models, the bacteria was maintained in the plant as an endophyte between $1{\times}10^1$ and $1{\times}10^5cfu$ of B. $glumae.g^{-1}$ of plant throughout the vegetative stage. An increase of bacterial population towards initiation of the panicle was observed, and in the maturity of the grain, an endophyte population was identified in the flag leaf at $1{\times}10^6cfu$ of B. $glumae.g^{-1}$ fresh weight of rice plant, conducting towards the symptoms of bacterial panicle blight. The results found, suggest that B. glumae in rice plants developed from infected seeds or from the substrate, can colonize seedlings, establishing and maintaining a bacterial population over time, using rice plants as habitat to survive endophyticly until formation of bacterial panicle blight symptoms.

Development of a Model to Predict the Primary Infection Date of Bacterial Spot (Xanthomonas campestris pv. vesicatoria) on Hot Pepper

  • Kim, Ji-Hoon;Kang, Wee-Soo;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.125-135
    • /
    • 2014
  • A population model of bacterial spot caused by Xanthomonas campestris pv. vesicatoria on hot pepper was developed to predict the primary disease infection date. The model estimated the pathogen population on the surface and within the leaf of the host based on the wetness period and temperature. For successful infection, at least 5,000 cells/ml of the bacterial population were required. Also, wind and rain were necessary according to regression analyses of the monitored data. Bacterial spot on the model is initiated when the pathogen population exceeds $10^{15}cells/g$ within the leaf. The developed model was validated using 94 assessed samples from 2000 to 2007 obtained from monitored fields. Based on the validation study, the predicted initial infection dates varied based on the year rather than the location. Differences in initial infection dates between the model predictions and the monitored data in the field were minimal. For example, predicted infection dates for 7 locations were within the same month as the actual infection dates, 11 locations were within 1 month of the actual infection, and only 3 locations were more than 2 months apart from the actual infection. The predicted infection dates were mapped from 2009 to 2012; 2011 was the most severe year. Although the model was not sensitive enough to predict disease severity of less than 0.1% in the field, our model predicted bacterial spot severity of 1% or more. Therefore, this model can be applied in the field to determine when bacterial spot control is required.

Simultaneous Enrichment of Novel Filamentous-Like Bacterial Population in Lab-Scale Granular Anaerobic Ammonia Oxidation (Anammox) Sequencing Batch Reactor (실험실 규모 입상 혐기성 암모늄 산화 연속회분식 반응조 내의 신종 사상균 동시 농화 배양에 관한 연구)

  • Park, Hongkeun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.377-382
    • /
    • 2013
  • Enriching anammox bacteria (AMX) in a lab-scale granular sequencing batch reactor using local digester centrate, we observed the significant enrichment of the filamentous-like bacterial population. These bacteria were revealed as novel bacterial species (termed CHL) belonging to Chlorobi/Bacteroidetes phyla via Denaturing Gradient Gel Electrophoresis (DGGE). Further, niche differentiation of AMX and CHL quantification was observed in granule and filament biomass, suggesting AMX was dominant in the granule and CHL was dominant in the filament. Therefore, it was confirmed the structural role of CHL was indeed to aid the granule formation of the AMX. In parallel, the physiological role of CHL was suspected to degrade biopolymers in the digester centrate using nitrate as an electron acceptor.

Studies on the Inheritance of Resistance to Bacterial Wilt(Ralstonia solanacearum) in Tobacco(Nicotiana tabacum L.) (연초의 세균성마름병 저항성 유전에 관한 연구)

  • 정석훈
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • Bacterial wilt(Ralstonia solanacearum) is one of the major diseases of flue-cured tobacco (Nicotiana tabacum L.) in the world. This study was conducted to investigate degree of dominance, selection, and correlation between leaf shape and degree of bacterial wilt resistance in flue-cured tobacco. The degree of disease caused by bacterial wilt was evaluated in parents, F$_1$, F$_2$ and F$_3$ populations of two crosses, BY 4 x NC 95 and BY 4 x Coker 86, in the infected field. The leaf shape index was also measured in parents and F$_2$ population of BY 4 x NC 95. The incidence of bacterial wilt was observed in the middle of June and peaked in late July, when the highest value of pathogen density reached 1.0 x 10$^{6}$ colony forming unit per gram. It was concluded that the inheritance mode of risestance to bacterial wilt in the above two crosses of susceptible and resistant varieties was recessive and polygenic. The resistance to bacterial wilt was significantly correlated with leaf shape in F2 generation of BY 4 x NC 95. But certain plants having narrower leaves were also resistant to bacterial wilt. It is considered that the bacterial wilt resistant lines having narrower leaves could be selected. The selection for bacterial wilt resistance in the F$_2$ population might be effective.

  • PDF

Enzyme Activities in the Soil of Quercus mongolica Forests (신갈나무 산림토양에서의 효소활성도)

  • Song In-Geun;Yong-Keel Choi;Byung-Re Min
    • The Korean Journal of Ecology
    • /
    • v.18 no.4
    • /
    • pp.503-512
    • /
    • 1995
  • The present paper describes partial results of the study on the activities of microbes in the soil of Quercus mongolica forest from July, 1994 to April, 1995. To determine the relationship between structure and function of soil microbial ecosystem, the author investigated the seasonal change of physical environmental factors, microbial population and soil enzyme activities. The changes of pH was not significant and the temperature of surface soil was 2℃ higher than lower soil through out the year. Moisture contents (%) of soil samples ranged from 7.64% to 42.11%. However, soils of site 3 at Mt. Komdan in which vegetation is successional have higher moisture content than the others. The bacterial population increased in summer, but continuously decreased in autumn and winter, and then reincreased again in spring. Bacterial population of surface soil was higher than those of 30 cm depth all the year round. Dehydrogenase activity (DHA) was about two-fold higher throughout in surface soil compared to those of lower soil. And the correlation coefficient between DHA and bacterial population size was 0,713, It was suggested that DHA could be used as a primary index of soil microbial population and activity in soil ecosystem.

  • PDF

In-Depth Characterization of Wastewater Bacterial Community in Response to Algal Growth Using Pyrosequencing

  • Lee, Jangho;Lee, Juyoun;Lee, Tae Kwon;Woo, Sung-Geun;Baek, Gyu Seok;Park, Joonhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1472-1477
    • /
    • 2013
  • Microalgae have been regarded as a natural resource for sustainable materials and fuels, as well as for removal of nutrients and micropollutants from wastewater, and their interaction with bacteria in wastewater is a critical factor to consider because of the microbial diversity and complexity in a variety of wastewater conditions. Despite their importance, very little is known about the ecological interactions between algae and bacteria in a wastewater environment. In this study, we characterized the wastewater bacterial community in response to the growth of a Selenastrum gracile UTEX 325 population in a real municipal wastewater environment. The Roche 454 GS-FLX Titanium pyrosequencing technique was used for indepth analysis of amplicons of 16S rRNA genes from different conditions in each reactor, with and without the algal population. The algal growth reduced the bacterial diversity and affected the bacterial community structure in the wastewater. The following in-depth analysis of the deep-sequenced amplicons showed that the algal growth selectively stimulated Sphingobacteria class members, especially the Sediminibacterium genus population, in the municipal wastewater environment.

The Within-Host Population Dynamics of Normal Flora in the Presence of an Invading Pathogen and Antibiotic Treatments

  • Kim, Jung-Mo;Lee, Dong-Hwan;Song, Yoon-Seok;Kang, Seong-Woo;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.146-153
    • /
    • 2007
  • A mathematical competition model between normal flora and an invading pathogen was devised to allow analysis of bacterial infections in a host. The normal flora includes the various microorganisms that live on or within the host and act as a primary human immune system. Despite the important role of the normal flora, no mathematical study has been undertaken on models of the interaction between it and invading pathogens against a background of antibiotic treatment. To quantify key elements of bacterial behavior in a host, pairs of nonlinear differential equations were used to describe three categories of human health conditions, namely, healthy, latent infection, and active infection. In addition, a cutoff value was proposed to represent the minimum population level required for survival. The recovery of normal flora after antibiotic treatment was also included in the simulation because of its relation to human health recovery. The significance of each simulation parameter for the bacterial growth model was investigated. The devised simulation showed that bacterial proliferation rate, carrying capacity, initial population levels, and competition intensity have a significant effect on bacterial behavior. Consequently, a model was established to describe competition between normal flora and an infiltrating pathogen. Unlike other population models, the recovery process described by the devised model can describe the human health recovery mechanism.