• Title/Summary/Keyword: Bacterial mixture

Search Result 218, Processing Time 0.026 seconds

Bioremediation Potential of a Tropical Soil Contaminated with a Mixture of Crude Oil and Production Water

  • Alvarez, Vanessa Marques;Santos, Silvia Cristina Cunha dos;Casella, Renata da Costa;Vitae, RonaIt Leite;Sebastin, Gina Vazquez;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1966-1974
    • /
    • 2008
  • A typical tropical soil from the northeast of Brazil, where an important terrestrial oil field is located, was accidentally contaminated with a mixture of oil and saline production water. To study the bioremediation potential in this area, molecular methods based on PCR-DGGE were used to determine the diversity of the bacterial communities in bulk and in contaminated soils. Bacterial fingerprints revealed that the bacterial communities were affected by the presence of the mixture of oil and production water, and different profiles were observed when the contaminated soils were compared with the control. Halotolerant strains capable of degrading crude oil were also isolated from enrichment cultures obtained from the contaminated soil samples. Twenty-two strains showing these features were characterized genetically by amplified ribosomal DNA restriction analysis (ARDRA) and phenotypically by their colonial morphology and tolerance to high NaCl concentrations. Fifteen ARDRA groups were formed. Selected strains were analyzed by 16S rDNA sequencing, and Actinobacteria was identified as the main group found. Strains were also tested for their growth capability in the presence of different oil derivatives (hexane, dodecane, hexadecane, diesel, gasoline, toluene, naphthalene, o-xylene, and p-xylene) and different degradation profiles were observed. PCR products were obtained from 12 of the 15 ARDRA representatives when they were screened for the presence of the alkane hydroxylase gene (alkB). Members of the genera Rhodococcus and Gordonia were identified as predominant in the soil studied. These genera are usually implicated in oil degradation processes and, as such, the potential for bioremediation in this area can be considered as feasible.

Immunosuppressive Activity of an Entomopathogenic Bacteria, Xenorhabdus ehlersii KSY, and Its Application to Enhance Insecticidal Activity of Bacillus thuringiensis (곤충병원세균(Xenorhabdus ehlersii KSY)의 곤충면역 억제 능력과 이를 이용한 Bacillus thuringiensis 의 살충력 증가 효과)

  • Kim, Hyoil;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.58 no.2
    • /
    • pp.101-109
    • /
    • 2019
  • An entomopathogenic bacterium, Xenorhabdus ehlersii KSY, is symbiotic to a nematode, Steinernema longicaudum, and exhibits high entomopathogenic virulence against lepidopteran insects. This study showed that the bacterial pathogenicity is induced by its inhibitory activity against eicosanoid biosynthesis of target insects, resulting in immunosuppression. To be applied for insect pest control, the bacteria should be infected to insect hemocoel. To deliver X. ehlersii to inset hemocoel, Bacillus thuringiensis (Bt) was mixed with the bacteria to breakdown the physical barrier (= midgut epithelium) from midgut lumen to hemocoel. The bacterial mixture significantly enhanced insecticidal activity of Bt only against larvae of Plutella xylostella and Maruca vitrata. For formulation, X. ehlersii cells were freeze-dried and mixed with sporulated Bt cells. The formulated bacterial mixture was applied to semi-field cultivating cabbage crop infested by P. xylostella. The bacterial mixture treatment showed over 95% control efficacy, while Bt alone gave 80% control efficacy. These results suggest that X. ehlersii can be applied to develop a novel insect control agent.

Protective Activity of the Mixtures of Pine Oil and Copper Hydroxide against Bacterial Spot and Anthracnose on Red Pepper (파인 오일과 수산화동 혼합물에 의한 고추 세균점무늬병과 탄저병의 방제 효과)

  • Soh, Jae-Woo;Han, Kyung-Sook;Lee, Seong-Chan;Lee, Jung-Sup;Park, Jong-Han
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.211-215
    • /
    • 2014
  • This research was performed to examine the protective activities of the mixtures of pine oil and copper hydroxide against bacterial spot and anthracnose on pepper plants. As for bacterial spot, the treatment of pine oil alone displayed high disease incidence (59.6%) and low protective effect (28.9%). In comparison, the treatments of mixtures and copper hydroxide alone showed protective activities of 66.8-76.1%. The mixture of pine oil and copper hydroxide (4:1) suppressed the most effectively bacterial spot on pepper. On the other hand, the mixture of pine oil and copper hydroxide (4:1) also showed the strongest protective effect against pepper anthracnose among the 4 treatments tested; its disease incidence and disease control value were 49.8% and 41.7%, respectively. The other treatments showed low protective activities with control values of 7.4-17.1%. These results suggested that the mixture of pine oil and copper hydroxide (4:1) can be used for the environmental-friendly disease control of bacterial spot and anthracnose on pepper.

Anti-inflammatory and anti-bacterial effects of a mixture of Syzygium aromaticum and Coptis japonica (정향과 황련 혼합물의 항균 및 항염증 활성 연구)

  • Eunhong Lee;Eun-mi Jung;Hyun-Ji Kwon;Jihye Lee;BongHyun Woo;Sungmin Park;Jinhan Park;Ji Wook Jung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1547-1556
    • /
    • 2023
  • This study was conducted to check the anti-bacterial ability against Malassezia furfur by mixing Szygium aromaticum and Coptis japonica extracts and to evaluate the antioxidant and anti-inflammatory ability by creating an optimal mixture. Szygium aromaticum and Coptis japonica were extracted with 70% ethanol, 100% methanol, and water to evaluate the antibacterial ability, and it was confirmed that 100% methanol extract of Szygium aromaticum and Coptis japonica water extract had the highest anti-bacterial ability. In addition, when the two extracts were mixed and the anti-bacterial ability was evaluated by ratio, the ratio of 9:1 showed the best activity, and it was confirmed that the antioxidant activity of the mixture was excellent. In Raw 264.7 cells, LPS was used to induce inflammatory responses and confirmed anti-inflammatory activity at 1, 10, 50, and 100 ㎍/mL that did not affect survival, and it was confirmed that NO-production inhibition and IL-6 expression inhibition and COX2 and iNOS protein expression inhibition activity were excellent at 10, 50, and 100 ㎍/mL. Through this study, it is thought that the mixture of Szygium aromaticum100% methanol extract and Coptis japonica water extract can be used as a natural ingredient in functional cosmetics because of its excellent antibacterial and anti-inflammatory effects.

Antibacterial Activity of Chitosan against Staphylococcus aureus -The Effect of Watersolubility, Degree of Deacetylation and Molecular Weight of Chitosan on Antibacterial Activity- (포도상구균(Staphylococcus aureus)에 대한 키토산의 항균성 -키토산의 수용성, 탈아세틸화도 및 분자량이 항균성에 미치는 효과-)

  • 한영숙;전동원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.807-818
    • /
    • 2004
  • The antibacterial activities of several types of chitosan were measured against Staphylococcus aureus and evaluated for their application to antibacterial textile finishing. The % reduction of bacteria of the chitosans prepared in our laboratory were between 72 and 87%. The two water-soluble chitosans with molecular weights 1,000 and 3,000 did not show antibacterial activities. The deacetylation of chitosan was appeared to increase antibacterial activity. The % reduction in bacterial density of the 86%-deacetylated chitosan solution was 56% where that of the 76%-deacetylated chitosan solution was only 17% at 0.1% chitosan concentration. Molecular weights of the chitosans seemed not to affect antibacterial activities of chitosans. The antibacterial activity of the acid-soluble, 86%-deacetylated chitosan with 4 cps showed 98% of the % reduction at the level of 0.2% chitosan. The % reduction of bacteria of this chitosan was higher at the higher concentration of acetic acid in the chitosan-bacterial mixture. The antibacterial activity was increased with the pH change over the range of 4.0 to 6.5. The 100% of the % reduction of bacteria was achieved within 4 hour incubation of the chitosan-bacterial mixture. According to the data obtained from the above experiments, the four chitosans among the six prepared in our laboratory were proved to be valuable for antibacterial textile finishing.

Characterization of the Bacterial Community in a Biocover for the Removal of Methane, Benzene and Toluene (메탄, 벤젠 및 톨루엔 제거용 바이오커버의 세균 군집 특성)

  • Ryu, Hee-Wook;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.76-81
    • /
    • 2012
  • Removal of methane, benzene and toluene was evaluated in a lab-scale biocover packed with a soil mixture of forest soil and earthworm cast (75:25 weight ratio). The bacterial community in the biocover was characterized using quantitative real-time PCR and terminal restriction fragment length polymorphism. Methane was removed at the upper layer of the biocover (-0.1 ~ -0.4 m), where the oxygen concentration was remarkably lower. The average removal efficiencies for methane and benzene/toluene were 90% and 99%, respectively. The pmoA gene copy numbers, responsible for methane oxidation, in the upper layer were higher than those in the lower layer. While type I methanotrohs dominated the lower layer, type II methanotrophs, such as Methylocystis and Methylosinus, were noted to be predominant in the upper layer. Benzene and toluene were removed from the lower layer (-0.6 ~ -0.9 m) as well as the upper layer. Moreover, the tmoA gene copy number, responsible for benzene/toluene oxidation, seen in the upper layer was not significantly different from those seen in the lower layer. These results suggest that a biocover packed with a soil and earthworm cast mixture is a promising method which could be utilized for the control of methane and volatile organic compounds such as benzene and toluene.

EFFECT OF SUPPLEMENTING UREA MOLASSES MINERAL BLOCK LICKS ON BACTERIAL PRODUCTION RATE IN THE RUMEN OF CROSSBRED CALVES

  • Garg, M.R.;Gupta, B.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.533-539
    • /
    • 1992
  • Sixteen crossbred (Sahiwal $\times$ Holstein) male rumen fistulated calves of 18 to 24 months of age were randomly divided into four groups of four animal, each. Animals in all the groups were fed wheat straw ad lib as basal roughage. However, the animals in group I were fed concentrate mixture at maintenance level, whereas, the animals in groups II, III and IV had free access to existing, modified (A) and modified (B) urea molasses mineral block licks respectively. Daily wheat straw intake (kg) was significantly (p<0.01) higher in groups II ($4.20{\pm}0.13$), III ($4.07{\pm}0.16$) and IV ($4.22{\pm}0.20$) as compared to group I ($3.21{\pm}0.14$). Total N and TCA precistrained rumen liquor) was significantly higher in groups II ($22.36{\pm}0.25$), III ($21.63{\pm}0.25$) and IV ($21.77{\pm}0.55$) as compared to group I ($18.31{\pm}0.41$). Bacterial production rate (g/day and g/kg digestible organic matter intake) were non-significantly different amongst groups I ($214.4{\pm}13.28;\;85.38{\pm}3.69$); II ($198.7{\pm}5.70;\;86.17{\pm}3.53$); III ($214.4{\pm}8.19;\;96.15{\pm}2.16$) and IV ($218.2{\pm}10.62;\;94.44{\pm}5.52$). Similarly, percent efficiency of N incorporation into bacterial protein was not found significantly different amongst groups I, II, III and IV. These studies indicate that when concentrate mixture (upto maintenance level) in the diet of ruminants was replaced with UMMB licks, various N fraction in SRL and efficiency of bacterial production rates in the rumen were not affected.

Reduced Bacterial Wilt in Tomato Plants by Bactericidal Peroxyacetic Acid Mixture Treatment

  • Hong, Jeum Kyu;Jang, Su Jeong;Lee, Young Hee;Jo, Yeon Sook;Yun, Jae Gill;Jo, Hyesu;Park, Chang-Jin;Kim, Hyo Joong
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.78-84
    • /
    • 2018
  • Peroxyacetic acid mixture Perosan, composed of peroxyacetic acid, hydrogen peroxide and acetic acid, was evaluated for eco-friendly management of tomato bacterial wilt by Ralstonia pseudosolanacearum. Perosan drastically suppressed in vitro growth of R. pseudosolanacearum in liquid cultures in dose- and incubation time-dependent manners. Higher perosan doses (0.1 and 1%) caused lowered pH and phytotoxicity to detached leaves of two tomato cultivars Cupirang and Benekia 220 in aqueous solution. Treatment with 0.01% of Perosan delayed wilting symptom significantly in the detached leaves of two cultivars inoculated with R. pseudosolanacearum ($10^7cfu/ml$). Soil drenching of 5% Perosan solution in pots caused severe tissue collapse of tomato seedlings at the four-week-old stage of two tomato cultivars. Treatment with 1% Perosan by soil-drenching significantly reduced bacterial wilt in the tomato seedlings of two cultivars. These findings suggest that Perosan treatment can be applied to suppress bacterial wilt during tomato production.

THE COMBINATION EFFECT OF SULFAMETHOXAZOLE AND TRIMETHOPRIM AGAINST ANIMAL INTESTINAL BACTERIA

  • Nakai, Y.;Matsumoto, H.;Ogimoto, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.3
    • /
    • pp.281-284
    • /
    • 1991
  • Combination effects of sulfamethoxazole (SMX) and trimethoprim (TMP) against nine gram positive bacterial strains and 43 gram negative bacterial strains which included 40 strains of animal intestinal bacteria were studied in vitro. Minimum inhibitory concentrations (MICs) of SMX and TMP alone and 20:1 (SMX : TMP) mixture (ST) were investigated by the method recommended by Ad Hoc Committee of the Japan Society of Chemotherapy for the Evaluation of Sensitivity Testing Methods for Sulfamethoxazole and Trimethoprim. MICs of ST were more potentiated than those of SMX alone in 8 of 9 gram positive strains and 40 of 43 gram negative strains. Especially, 38 strains of 40 intestinal bacteria showed significant susceptibility to ST as compared to SMX. These results suggest a strong synergistic activity of ST mixture against animal intestinal bacteria, The activity was considered to be comparable to those of other current antibiotics.

Development of "Bt-Plus" Biopesticide Using Entomopathogenic Bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) Metabolites (곤충병원세균(Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata)의 대사물질을 이용한 "비티플러스" 생물농약 개발)

  • Seo, Sam-Yeol;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.171-178
    • /
    • 2011
  • Bacillus thuringiensis (Bt) is a bacterial biopesticide against insect pests, mainly lepidopterans. Spodoptera exigua and Plutella xylostella exhibit significant decreases in Bt susceptibility in late larval instars. To enhance Bt pathogenicity, we used a mixture treatment of Bt and other bacterial metabolites which possessed significant immunosuppressive activities. Mixtures of Bt with culture broths of Xenorhabdus nematophila (Xn) or Photorhabdus temperata ssp. temperata (Ptt) significantly enhanced the Bt pathogenicity against late larval instars. Different ratios of Bt to bacterial culture broth had significant pathogenicities against last instar P. xylostella and S. exigua. Five compounds identified from the bacterial culture broth also enhanced Bt pathogenicity. After determining the optimal ratios, the mixture was applied to cabbage infested by late instar P. xylostella or S. exigua in greenhouse conditions. A mixture of Bt and Xn culture broth killed 100% of both insect pests when it was sprayed twice, while Bt alone killed less than 80% or 60% of P. xylostella and S. exigua, respectively. Other Bt mixtures, including Ptt culture broth or bacterial metabolites, also significantly increased pathogenicity in the semi-field assays. These results demonstrated that the Bt mixtures collectively names "Bt-Plus" can be developed into potent biopesticides to increase the efficacy of Bt.