• 제목/요약/키워드: Bacterial metabolism

검색결과 165건 처리시간 0.023초

Porphyromonas Gingivalis Invasion of Human Aortic Smooth Muscle Cells

  • Lee, Seoung-Man;Lee, Hyeon-Woo;Lee, Jin-Yong
    • International Journal of Oral Biology
    • /
    • 제33권4호
    • /
    • pp.163-177
    • /
    • 2008
  • Periodontal disease, a form of chronic inflammatory bacterial infectious disease, is known to be a risk factor for cardiovascular disease (CVD). Porphyromonas gingivalis has been implicated in periodontal disease and widely studied for its role in the pathogenesis of CVD. A previous study demonstrating that periodontopathic P. gingivalis is involved in CVD showed that invasion of endothelial cells by the bacterium is accompanied by an increase in cytokine production, which may result in vascular atherosclerotic changes. The present study was performed in order to further elucidate the role of P. gingivalis in the process of atherosclerosis and CVD. For this purpose, invasion of human aortic smooth muscle cells (HASMC) by P. gingivalis 381 and its isogenic mutants of KDP150 ($fimA^-$), CW120 ($ppk^-$) and KS7 ($relA^-$) was assessed using a metronidazole protection assay. Wild type P. gingivalis invaded HASMCs with an efficiency of 0.12%. In contrast, KDP150 failed to demonstrate any invasive ability. CW120 and KS7 showed relatively higher invasion efficiencies, but results for these variants were still negligible when compared to the wild type invasiveness. These results suggest that fimbriae are required for invasion and that energy metabolism in association with regulatory genes involved in stress and stringent response may also be important for this process. ELISA assays revealed that the invasive P. gingivalis 381 increased production of the proinflammatory cytokine interleukin (IL)-$1{\beta}$ and the chemotactic cytokines (chemokine) IL (interleukin)-8 and monocyte chemotactic (MCP) protein-1 during the 30-90 min incubation periods (P<0.05). Expression of RANTES (regulation upon activation, normal T cell expressed and secreted) and Toll-like receptor (TLR)-4, a pattern recognition receptor (PRR), was increased in HASMCs infected with P. gingivalis 381 by RT-PCR analysis. P. gingivalis infection did not alter interferon-$\gamma$-inducible protein-10 expression in HASMCs. HASMC nonspecific necrosis and apoptotic cell death were measured by lactate dehydrogenase (LDH) and caspase activity assays, respectively. LDH release from HASMCs and HAMC caspase activity were significantly higher after a 90 min incubation with P. gingivalis 381. Taken together, P. gingivalis invasion of HASMCs induces inflammatory cytokine production, apoptotic cell death, and expression of TLR-4, a PRR which may react with the bacterial molecules and induce the expression of the chemokines IL-8, MCP-1 and RANTES. Overall, these results suggest that invasive P. gingivalis may participate in the pathogenesis of atherosclerosis, leading to CVD.

Effects of Glucagon-Like Peptide-2-Expressing Saccharomyces cerevisiae Not Different from Empty Vector

  • Zhong, Xi;Liang, Guopeng;Cao, Lili;Qiao, Qi;Hu, Zhi;Fu, Min;Bo, Hong;Wu, Qin;Liang, Guanlin;Zhang, Zhongwei;Zhou, Lin
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1644-1655
    • /
    • 2019
  • Saccharomyces cerevisiae (S. cerevisiae) and glucagon-like peptide-2 (GLP-2) have been employed to improve the intestinal development of weaned animals. The goal of this study was to determine whether either exogenous S. cerevisiae or GLP-2 elicits major effects on fecal microbiotas and cytokine responses in weaned piglets. Ninety-six piglets weaned at 26 days were assigned to one of four groups: 1) Basal diet (Control), 2) empty vector-harboring S. cerevisiae (EV-SC), 3) GLP-2-expressing S. cerevisiae (GLP2-SC), and 4) recombinant human GLP-2 (rh-GLP2). At the start of the post-weaning period (day 0), and at day 28, fecal samples were collected to assess the bacterial communities via sequencing the V1-V2 region of the 16S-rRNA gene, and piglets' blood was also sampled to measure cytokine responses (i.e., IL-$1{\beta}$, TNF-${\alpha}$, and IFN-${\gamma}$). This study revealed that, on the one hand, although S. cerevisiae supplementation did not significantly alter the growth of weaned piglets, it induced increases in the relative abundances of two core genera (Ruminococcaceae_norank and Erysipelotrichaceae_norank) and decreases in the relative abundances of two other core genera (Lachnospiraceae_norank and Clostridiale_norank) and cytokine levels (IL-$1{\beta}$ and TNF-${\alpha}$) (p < 0.05, Control vs EV-SC; p < 0.05, rh-GLP2 vs GLP2-SC). On the other hand, GLP-2 supplementation had no significant influence on fecal bacterial communities and cytokine levels, but it produced better body weight and average daily gain (p < 0.05, Control vs EV-SC; p < 0.05, rh-GLP2 vs GLP2-SC). Therefore, altered fecal microbiotas and cytokine response effects in weaned piglets were due to S. cerevisiae rather than GLP-2.

식이 당 대체제인 자일리톨의 구강건강 증진에 미치는 다양한 효과 (The Various Effects of Xylitol as a Dietary Sugar Substitute on Improving Oral Health)

  • 황윤숙;이후장
    • 한국식품위생안전성학회지
    • /
    • 제37권2호
    • /
    • pp.107-113
    • /
    • 2022
  • 현재까지, 식이 당의 전체적 또는 부분적 대체당으로서 자일리톨의 치아우식증에 대한 예방 효과를 확인하기 위해 많은 연구가 수행되었다. 본 총설논문에서는 자일리톨의 구강건강에 대한 기존 연구들을 바탕으로 자일리톨의 치아우식증 예방 기전, 치아우식증 예방, 치아우식증 유발균의 모자전염 예방, 노인의 구강건강에 미치는 영향 등이 정리되었다. 식품에 함유된 탄수화물 및 식이 당은 구강 내에서 산을 생성하는 미생물에 의해 발효되어 치석 및 산을 생성하여 치아우식증을 일으킨다. 그러나 충치를 일으키는 세균 대부분은 자일리톨을 대사하여 산을 만들어 낼 수 없다. Streptococcus mutans (S. mutans)에 의한 비대사성 대사물로서 세포 내에 축적된 자일리톨은 S. mutans의 성장을 억제하고 치석 형성을 억제하여 치석과 타액 중 S. mutans 수를 감소시킨다. 또한, 자일리톨은 치아의 재광화(remineralization) 과정에 작용한다. 자일리톨은 치아우식증 예방, S. mutans의 모자감염 예방, 노인의 충치예방 및 타액분비 증가에 효과가 있는 것으로 확인되었다. 결론적으로, 자일리톨은 남녀노소 구분 없이 구강건강에 효과적이며 쉽게 섭취할 수 있는 장점이 있다. 향후, 자일리톨의 과량섭취에 따른 부작용과 구강 및 장내 환경에 미치는 전반적인 영향에 대한 보다 정확하고 상세한검토가 필요하다.

Effect of Panax ginseng Extract on Growth Responses of Human Intestinal Bacteria and Bacterial Metabolism

  • Ahn, Y.J.;Kim, M.J.;Kawamura, T.;Yamamoto, T.;Fujisawa, T.;Mitsuoka, T.
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1990년도 Proceedings of International Symposium on Korean Ginseng, 1990, Seoul, Korea
    • /
    • pp.111-122
    • /
    • 1990
  • The growth responses of a variety of human Intestinal bacteria to extracts of Pun(1.vKy'n.ieny and five other oriental medicinal Araliaceae were evaluated in vitro and in vivo. The extracts enhanced the growth of Bifidobncterilim breve and B. longum in Media with or without carbon sources, suggesting the bifid factor (5) might be involved in the phenomenon. This effect was most pronounced with water extract of p. ginseng, the growth of 27 bifidobacteria strains belonging to B. ndolexcentium, H. longlrm, and 1. breve and B. iniuntis being greatly stimurated, whereas seven B. bifidum strains and other bacteria such as clostridia and 5.fcherirhia coli had little or no ability to utilizes it (or growth. Methanol extracts of p, ginseng were found to selectively inhibit growth of various clostridia including C. perfringens and C. Paraputrificum, but this effect was not observed on other bacteria including bifidobacteria. The effect of ginseng extract intake(600 mg/day for two weeks) on the fecal microflora, pH, volatile fatty acids, ammonia, putrefactive products, and -glucuronidase, -glucosidase and nitroreductase activities, and on the blood components (triglyceride, total cholesterol and ammonia) were investigated using seven healthy human volunteers. The total concentration of fecal microflora including Bri'idobucterilim app. during the period of ginseng extract intake was significantly unaffected from the proceeding and sub sequent control periods. However, the frequency of occurrence of subjects having C. perfringens was significantly decreased. The fecal pH value was also significantly decreased, suggesting that the intake might increase the activity of Bifidobacterium spp. Other biochemical properties in faces did not changed significantly. The levels of ammonia and triglycerid in blood were decreased with ginseng extract intake. These results may be an indication of at least one of the pharmacological actions of P ginseng as an adaptogen.

  • PDF

Metabolic Activities of Ginseng and Its Constituents, Ginsenoside Rb1 and Rg1, by Human Intestinal Microflora

  • Choi, Jong-Ryul;Hong, Sung-Woon;Kim, Yu-Ri;Jang, Se-Eun;Kim, Nam-Jae;Han, Myung-Joo;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제35권3호
    • /
    • pp.301-307
    • /
    • 2011
  • To evaluate the difference in expressing pharmacological effects of ginseng by intestinal microflora between Koreans, metabolic activities of ginseng, ginsenoside $Rb_1$ and $Rg_1$ by 100 fecal specimens were measured. The ${\beta}$-glucosidase activity for p-nitrophenyl-${\beta}$-D-glucopyranoside was 0 to 0.42 mmol/min/mg and its average activity (mean${\pm}$SD) was $0.10{\pm}0.07$ mmol/min/mg. The metabolic activities of ginsenosides Rb1 and Rg1 were 0.01 to 0.42 and 0.01 to 0.38 pmol/min/mg, respectively. Their average activities were $0.25{\pm}0.08$ and $0.15{\pm}0.09$ pmol/min/mg, respectively. The compound K-forming activities from ginsenoside Rb1 and ginseng extract were 0 to 0.11 and 0 to 0.02 pmol/min/mg, respectively. Their average compound K-forming activities were $0.24{\pm}0.09$ pmol/min/ mg and $2.14{\pm}3.66$ fmol/min/mg, respectively. These activities all were not different between males and females, or between ages. Although compound K-forming activity from the aqueous extract of ginseng was low compared to that from ginenoside $Rb_1$, their profiles were similar to those of isolated compounds. Based on these findings, we believe that the intestinal bacterial metabolic activities of ginseng components are variable in individuals and may be used as selection markers for responders to ginseng.

인삼섭취가 장내세균 및 세균대사에 미치는 영향 (Effect of Panax ginseng Extract on Growth Responses of Human Intestinal Bacteria and Bacterial Metabolism)

  • Ahn, Y.J.;Kim, M.J.;Kawamura, T.;Yamamoto, T.;Fujisawa, T.;Mitsuoka, T.
    • Journal of Ginseng Research
    • /
    • 제14권2호
    • /
    • pp.253-264
    • /
    • 1990
  • The growth responses of a variety of human intestinal bacteria to extracts of Panax ginseng and five other oriental medicinal Araliaceae were elraluattd in vitro and in vivo. The extracts enhanced the growth of Brifidobnnerilrm breve and B. longlim in media with or without carbon sources, suggesting that bifidus factors) might be involved in the phenomenon. This effect was most pronounced with water extract of P. ginseng, the growth of 27 bifidobacteria strains belonging to B adolescentis, B. longum, B. brim and B. infantis being greatly stimurated, whereas seven B. bifidum strains and other bacteria such as clostridia and Escherichin soli had little or no ability to utilise it for growth. Methanol extracts of p. ginseng were found to selectively inhibit growth of various clostridia including bifidobacteria. Paraputrificum, but this effect was not observed on other bacteria including bifidobacteria. The effect of ginseng extract intake (600 mg/day for two weeks) on the faecal microflora, pH, volatile fatty acids, ammonia, putrefactive products, and -glucuronidase, -glucosidase and nitroreductase activities, and on the blood components (triglyceride, total cholesterol and ammonia) were investigated using seven healthy human volunteers. The total concentration of faecal microflora including Bifidnkaderiifm app. during the period of ginseng extract intake %twas significantly unaffected from the preceding and subsequent control peroids. However, the frequency of occurrence of subjects having C. perfringens was significantly decreased. The faecal pH value was also significantly decreased, suggesting that the intake might increase the activity of Bifidobncterium spry. Other biochemical properties in faeces did not changed significantly. The levels of ammonia and triglycerid in blood were decreased with ginseng extract intake. These results may be an indication of at least one of the Pharmacological actions of p. ginseng as an adaptogen.

  • PDF

Bioelectrochemical Mn(II) Leaching from Manganese Ore by Lactococcus lactis SK071115

  • Jeon, Bo-Young;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.154-161
    • /
    • 2011
  • L. lactis sk071115 has been shown to grow more actively and generate lower levels of lactate in glucose-defined medium with nitrate than in medium with Mn(IV). By adding Mn(IV) to a L. lactis culture, lactate production was relatively reduced in combination with Mn(II) production, but cell mass production levels did not increase. Both cell-free extract and intact L. lactis cells reacted electrochemically with Mn(IV) but did not react with Mn(II) upon cyclic voltammetry using neutral red (NR) as an electron mediator. A modified graphite felt cathode with NR (NR-cathode) was employed to induce electrochemical reducing equivalence for bacterial metabolism. Cell-free L. lactis extract catalyzed the reduction of Mn(IV) to Mn(II) under both control and electrochemical reduction conditions; however, the levels of Mn(II) generated under electrochemical reduction conditions were approximately 4 times those generated under control conditions. The levels of Mn(II) generated by the catalysis of L. lactis immobilized in the NR-cathode (L-NR-cathode) under electrochemical reduction conditions were more than 4 times that generated under control conditions. Mn(II) production levels were increased by approximately 2.5 and 4.5 times by the addition of citrate to the reactant under control and electrochemical reduction conditions, respectively. The cumulative Mn(II) produced from manganese ore by catalysis of the L-NR-cathode for 30 days reached levels of approximately 3,800 and 16,000 mg/l under control and electrochemical reduction conditions, respectively. In conclusion, the electrochemical reduction reaction generated by the NR-cathode activated the biochemical reduction of Mn(IV) to Mn(II) by L. lactis.

Molecular Analysis of the Salmonella Typhimurium tdc Operon Regulation

  • Kim, Min-Jeong;Lim, Sang-Yong;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1024-1032
    • /
    • 2008
  • Efficient expression of the Salmonella Typhimurium tdc ABCDEG operon involved in the degradation of L-serine and L-threonine requires TdcA, the transcriptional activator of the tdc operon. We found that the tdcA gene was transiently activated when the bacterial growth condition was changed from aerobic to anaerobic, but this was not observed if Salmonella was grown anaerobically from the beginning of the culture. Expression kinetics of six tdc genes after anaerobic shock demonstrated by a real-time PCR assay showed that the tdc CDEG genes were not induced in the tdcA mutant but tdcB maintained its inducibility by anaerobic shock even in the absence of tdcA, suggesting that an additional unknown transcriptional regulation may be working for the tdcB expression. We also investigated the effects of nucleoid-associated proteins by primer extension analysis and found that H-NS repressed tdcA under anaerobic shock conditions, and fis mutation delayed the peak expression time of the tdc operon. DNA microarray analysis of genes regulated by TdcA revealed that the genes involved in N-acetylmannosamine, maltose, and propanediol utilization were significantly induced in a tdcA mutant. These findings suggest that Tdc enzymes may playa pivotal role in energy metabolism under a sudden change of oxygen tension.

EFFECTS OF THE HERBICIDE, BUTACHLOR, ON NITROGEN FIXATION IN PHOTOTROPHIC NONSULFUR BACTERIA

  • Lee, Kyung-Mi;Kim, Jai-Soo;Lee, Hyun-Soon
    • Environmental Engineering Research
    • /
    • 제12권4호
    • /
    • pp.136-147
    • /
    • 2007
  • In an effort to identify possible microbes for seeking bioagents for remediation of herbicide-contaminated soils, seven species of phototrophic nonsulfur bacteria (Rhodobacter capsulatus and sphaeroides, Rhodospirillum rubrum, Rhodopseudomonas acidophila, blastica and viridis, Rhodomicrobium vannielii) were grown in the presence of the herbicide, butachlor, and bacterial growth rates and nitrogen fixation were measured with different carbon sources. Under general conditions, all species showed 17-53% reductions in growth rate following butachlor treatment. Under nitrogen-fixing conditions, Rb. capsulatus and Rs. rubrum showed 1-4% increases in the growth rates and 2-10% increases in nitrogen-fixing abilities, while the other 5 species showed decreases of 17-47% and 17-85%, respectively. The finding that Rp. acidophila, Rp. blastica, Rp. viridis and Rm. vannielii showed stronger inhibitions of nitrogenase activity seems to indicate that species in genera Rhodobacter and Rhodospirillum are less influenced by butachlor than those in Rhodopseudomonas and Rhodomicrobium in terms of nitrogen-fixing ability. Overall, nitrogenase activity was closely correlated with both growth rate and glutamine synthetase activity (representing nitrogen metabolism). When the carbon sources were compared, pyruvate (three carbons) was best for all species in terms of growth rate and nitrogen fixation, with malate (four carbons) showing intermediate values and ribose(five carbons) showing the lowest; these trends did not change in response to butachlor treatment. We verified that each of the 7 species had a plasmid ($12.2{\sim}23.5\;Kb$). We found that all 7 species could use butachlor as a sole carbon source and 3 species were controlled by plasmid-born genes, but it is doubtful whether plasmid-born genes were responsible to nitrogen fixation.

Evaluation of Biogas Production Performance and Dynamics of the Microbial Community in Different Straws

  • Li, Xue;Liu, Yan-Hua;Zhang, Xin;Ge, Chang-Ming;Piao, Ren-Zhe;Wang, Wei-Dong;Cui, Zong-Jun;Zhao, Hong-Yan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.524-534
    • /
    • 2017
  • The development and utilization of crop straw biogas resources can effectively alleviate the shortage of energy, environmental pollution, and other issues. This study performed a continuous batch test at $35^{\circ}C$ to assess the methane production potential and volatile organic acid contents using the modified Gompertz equation. Illumina MiSeq platform sequencing, which is a sequencing method based on sequencing-by-synthesis, was used to compare the archaeal community diversity, and denaturing gradient gel electrophoresis (DGGE) was used to analyze the bacterial community diversity in rice straw, dry maize straw, silage maize straw, and tobacco straw. The results showed that cumulative gas production values for silage maize straw, rice straw, dry maize straw, and tobacco straw were 4,870, 4,032.5, 3,907.5, and $3,628.3ml/g{\cdot}VS$, respectively, after 24 days. Maximum daily gas production values of silage maize straw and rice straw were 1,025 and $904.17ml/g{\cdot}VS$, respectively, followed by tobacco straw and dry maize straw. The methane content of all four kinds of straws was > 60%, particularly that of silage maize straw, which peaked at 67.3%. Biogas production from the four kinds of straw was in the order silage maize straw > rice straw > dry maize straw > tobacco straw, and the values were 1,166.7, 1,048.4, 890, and $637.4ml/g{\cdot}VS$, respectively. The microbial community analysis showed that metabolism was mainly carried out by acetate-utilizing methanogens, and that Methanosarcina was the dominant archaeal genus in the four kinds of straw, and the DGGE bands belonged to the phyla Firmicutes, Bacteroidetes, and Chloroflexi. Silage maize is useful for biogas production because it contains four kinds of straw.