• Title/Summary/Keyword: Bacterial inoculants

Search Result 31, Processing Time 0.026 seconds

Effect of Non-indigenous Bacterial Introductions on Rhizosphere Microbial Community

  • Nogrado, Kathyleen;Ha, Gwang-Su;Yang, Hee-Jong;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.194-202
    • /
    • 2021
  • BACKGROUND: Towards achievement of sustainable agriculture, using microbial inoculants may present promising alternatives without adverse environmental effects; however, there are challenging issues that should be addressed in terms of effectiveness and ecology. Viability and stability of the bacterial inoculants would be one of the major issues in effectiveness of microbial pesticide uses, and the changes within the indigenous microbial communities by the inoculants would be an important factor influencing soil ecology. Here we investigated the stability of the introduced bacterial strains in the soils planted with barley and its effect on the diversity shifts of the rhizosphere soil bacteria. METHODS AND RESULTS: Two different types of bacterial strains of Bacillus thuringiensis and Shewanella oneidensis MR-1 were inoculated to the soils planted with barley. To monitor the stability of the inoculated bacterial strains, genes specific to the strains (XRE and mtrA) were quantified by qPCR. In addition, bacterial community analyses were performed using v3-v4 regions of 16S rRNA gene sequences from the barley rhizosphere soils, which were analyzed using Illumina MiSeq system and Mothur. Alpha- and beta-diversity analyses indicated that the inoculated rhizosphere soils were grouped apart from the uninoculated soil, and plant growth also may have affected the soil bacterial diversity. CONCLUSION: Regardless of the survival of the introduced non-native microbes, non-indigenous bacteria may influence the soil microbial community and diversity.

Effects of Bacterial Inoculants and Organic Acids on Silage Quality : Meta-analysis (미생물제제 및 유기산제제의 처리가 사일리지 품질에 미치는 영향 : 메타분석)

  • Cho, Sangbuem;Kwon, Chan Ho;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.2
    • /
    • pp.94-102
    • /
    • 2014
  • This study was conducted to estimate and compare the effects of bacterial inoculants and organic acids on silage quality. Silage pH, lactate, acetate, lactate:acetate ratio, propionate, butyrate, water-soluble carbohydrate, crude protein, ammonia-N, neutral detergent fiber and acid detergent fiber (ADF) were used as parameters for quality analysis and a meta-analysis technique was employed to determine the effect size. As a data pool for analysis, we examined 14 research papers. Bacterial inoculants were found to elevate pH, lactate, acetate, lactate:acetate ratio, propionate and ADF contents compared to the controls (p<0.01). In contrast bacterial inoclulants decreased butyrate, water-soluble carbohydrate, crude protein and ammonia-N contents (p<0.01). In the organic acid treatments, all parameters except ADF showed higher contents than the control (p<0.01). In the comparison of effect sizes between the two treatments, significant differences were detected in butyrate, water-soluble carbohydrate, crude protein and ammonia-N (p<0.05). It may be concluded that bacterial inoculants could improve silage quality in terms of the aforementioned four parameters compared with organic acid treatments.

SILAGE FERMENTATION AND SILAGE ADDITIVES - Review -

  • Bolsen, K.K.;Ashbell, G.;Weinberg, Z.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.483-493
    • /
    • 1996
  • Advances in silage technology, including precision chop forage harvesters, improved silos, polyethylene sheeting, shear cutting silo unloaders, and the introduction of total mixed rations, have made silage the principal method of forage preservation. A better understanding of the biochemistry and microbiology of the four phases of the ensiling process has also led to the development of numerous silage additives. Although acids and acid salts still are used to ensile low-DM forages in wet climates, bacterial inoculants have become the most widely used silage additives in the past decade. Commercial inoculants can assure a rapid and efficient fermentation phase; however, in the future, these products also must contribute to other areas of silage management, including the inhibition of enterobacteria, clostridia, and yeasts and molds. Nonprotein nitrogen additives have the problems of handling, application, and reduced preservation efficiency, which have limited their wide spread use. Aerobic deterioration in the feedout phase continues to be a serious problem, especially in high-DM silages. The introduction of competitive strains of propionic acid-producing bacteria, which could assure aerobically stable silages, would improve most commercial additives. New technologies are needed that would allow the farmer to assess the chemical and microbial status of the silage crop on a given day and then use the appropriate additive(s).

Application Effects of Bacterial Inoculants Producing Chitinase on Corn Silage

  • Young Ho Joo;Seung Min Jeong;Jiyoon Kim;Myeong Ji Seo;Chang Hyun Baeg;Seong Shin Lee;Byeong Sam Kang;Ye Yeong Lee;Jin Woo Kim;Sam-Churl Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.148-155
    • /
    • 2023
  • This study was aimed to isolate bacterial inoculants producing chitinase and evaluate their application effects on corn silage. Four corn silages were collected from four beef cattle farms to serve as the sources of bacterial inoculants. All isolates were tested against Fusarium graminearum head blight fungus MHGNU F132 to confirm their antifungal effects. The enzyme activities (carboxylesterase and chitinase) were also measured to isolate the bacterial inoculant. Based on the activities of anti-head blight fungus, carboxylesterase, and chitinase, L. buchneri L11-1 and L. paracasei L9-3 were subjected to silage production. Corn forage (cv. Gwangpyeongok) was ensiled into a 10 L mini silo (5 kg) in quadruplication for 90 days. A 2 × 2 factorial design consists of F. graminearum contamination at 1.0104 cfu/g (UCT (no contamination) vs. CT (contamination)) and inoculant application at 2.1 × 105 cfu/g (CON (no inoculant) vs. INO (inoculant)) used in this study. After 90 days of ensiling, the contents of CP, NDF, and ADF increased (p<0.05) by F. graminearum contamination, while IVDMD, acetate, and aerobic stability decreased (p<0.05). Meanwhile, aerobic stability decreased (p<0.05) by inoculant application. There were interaction effects (p<0.05) on IVNDFD, NH3-N, LAB, and yeast, which were highest in UCT-INO, UCT-CON, CT-INO, and CT-CON & INO, respectively. In conclusion, this study found that mold contamination could negatively impact silage quality, but isolated inoculants had limited effects on IVNDFD and yeast.

Effects of Microbial Additives on Chemical Composition and Fermentation Characteristics of Barley Silage

  • Amanullah, S.M.;Kim, D.H.;Lee, H.J.;Joo, Y.H.;Kim, S.B.;Kim, S.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.511-517
    • /
    • 2014
  • This study examined the effects of bacterial inoculants on chemical composition and fermentation indices of barley silage. Barley forage (Youngyang) was harvested at 24% dry matter (DM) and wilted to 47.9% DM. The wilted barley forage was chopped to 3-5 cm length and applied with no inoculant (CON), L. plantarum ($1{\times}10^{10}cfu/g$, LP) or Effective Microorganisms ($0.5{\times}10^9cfu/g$, EM). Then the forages were ensiled in four replications for each treatment in 20 L mini silos and stored for 100 days. The contents of crude protein and ether extract were higher in CON silage ensiled for 100-d, while the contents of DM and crude ash were higher in EM silage (p<0.05). The contents of ADF, NDF and hemicellulose as well as the in vitro DM digestibility were not affected by microbial inoculation (p>0.05). The pH, ammonia-N concentration and lactate to acetate ratio were higher (p<0.05) in CON silage, while lactate concentrations were higher (p<0.05) in CON and LP silage. Acetate concentration and lactic acid bacteria was increased (p<0.05) by both inoculants (LP and EM), but propionate concentration and yeast was increased (p<0.05) by EM and LP, respectively. These results indicated that the fermentation quality of barley silage was improved by the application of bacterial inoculants.

Effects of Ensiling Period and Bacterial Inoculants on Chemical Compositions and Fermentation Characteristics of Rye Silage

  • Lee, Seong Shin;Joo, Young Ho;Choi, Jeong Seok;Jeong, Seung Min;Paradhipta, Dimas Hand Vidya;Noh, Hyeon Tak;Han, Ouk Kyu;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.4
    • /
    • pp.259-266
    • /
    • 2021
  • The present study was aimed to estimate the effect of ensiling period and bacterial inoculants on chemical compositions and fermentation characteristics on rye silage harvested at delayed stage. Rye (Secale cereale L.) was harvested after 20 days of heading stage (29.4% dry matter, DM). The harvested rye forage was applied with different inoculants following: applications of distilled water (CON), Lactobacillus brevis (LBB), Leuconostoc holzapfelii (LCH), or mixture of LBB and LCH at 1:1 ratio (MIX). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 50 (E50D) and 100 (E100D) days in triplicates. The E50D silages had higher in vitro digestibilities of DM (IVDMD, p<0.001) and neutral detergent fiber (IVNDFD, p=0.013), and lactate (p=0.009), and acetate (p=0.011) than those of E100D, but lower pH, lactic acid bacteria (LAB), and yeast. By inoculant application, LCH had highest IVDMD and IVNDFD (p<0.05), while MIX had highest lactate and lowest pH (p<0.05). The CON and LCH in E50D had highest LAB and yeast (p<0.05), whereas LBB in E100D had lowest (p<0.05). Therefore, this study concluded that LCH application improved the nutrient digesbility (IVDMD and IVNDFD) of lignified rye silage, and longer ensiling period for 100 days enhanced the fermentation characteristics of silage compared to ensiling for 50 days.

Bacterial Inoculant Effects on Corn Silage Fermentation and Nutrient Composition

  • Jalc, D.;Laukova, Andrea;Pogany Simonova, M.;Varadyova, Z.;Homolka, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.977-983
    • /
    • 2009
  • The survival and effect of three new probiotic inoculants (Lactobacillus plantarum CCM 4000, L. fermentum LF2, and Enterococcus faecium CCM 4231) on the nutritive value and fermentation parameters of corn silage was studied under laboratory conditions. Whole corn plants (288.3 g/kg DM) were cut and ensiled at $21^{\circ}C$ for 105 days. The inoculants were applied at a concentration of $1.0{\times}10^{9}$ cfu/ml. Uninoculated silage was used as the control. The chopped corn was ensiled in 40 plastic jars (1 L) divided into four groups (4${\times}$10 per treatment). All corn silages had a low pH (below 3.55) and 83-85% of total silage acids comprised lactic acid after 105 days of ensiling. The probiotic inoculants in the corn silages affected corn silage characteristics in terms of significantly (p<0.05-0.001) higher pH, numerically lower crude protein content and ratio of lactic to acetic acid compared to control silage. However, the inoculants did not affect the concentration of total silage acids (acetic, propionic, lactic acids) as well as dry matter digestibility (IVDMD) of corn silages in vitro. In the corn silages with three probiotic inoculants, significantly (CCM 4231, CCM 4000) lower n-6/n-3 ratio of fatty acids was detected than in control silage. Significant decrease in the concentration of $C_{18:1}$, and significant increase in the concentration of $C_{18:2}$ and $C_{18:3}$ was mainly found in the corn silages inoculated with the strains E. faecium CCM 4231 and L. plantarum CCM 4000. At the end of ensiling, the inoculants were found at counts of less than 1.0 log10 cfu/g in corn silages.

Synergistic Phosphate Solubilization by Burkholderia anthina and Aspergillus awamori

  • Walpola, Buddhi Charana;Jang, Hyo-Ju;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.117-121
    • /
    • 2013
  • Single or co-inoculation of phosphate solubilizing bacterial and fungal strains (Burkholderia anthina and Aspergillus awamori respectively) was performed separately to assess their synergistic and antagonistic interactions and the potential to be used as bio-inoculants. Co-inoculation was found to release the highest content of soluble phosphorus (1253 ${\mu}g\;ml^{-1}$) into the medium, followed by single inoculation of fungal strain (1214 ${\mu}g\;ml^{-1}$) and bacterial strain (997 ${\mu}g\;ml^{-1}$). However, there was no significant difference between single inoculation of fungal strain and co-inoculation of fungal and bacterial strain in terms of the phosphorous release. The highest pH reduction, organic acid production and glucose consumption were observed in the sole A. awamori inoculated culture medium. According to the plant growth promotion bioassays, co-inoculation of the microbial strains resulted in 21% and 43% higher shoot and root growth of the mung bean seedlings respectively as compared to the respective controls. Therefore, co-inoculation of B. anthina and A. awamori showed better performance in stimulating plant growth than that in inoculation of each strain alone. However, assessment period of the present study being short, we recommend in engaging further experimentation under field conditions in order to test the suitability of the strains to be used as bio-inoculants.

Growth Promotion of Tomato by Application of Immobilized Arthrobacter woluwensis ED in Alginate Beads (Alginate에 고정화된 Arthrobacter woluwensis ED 처리 시 토마토의 생장촉진과 균주의 토양 내 잔류)

  • Kwon, Seung-Tak;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • In order to increase the persistence of plant growth promoting rhizobacteria (PGPR) in rhizpsphere soil, the growth of tomato was examined after the application of Arthrobacter woluwensis ED immobilized in alginate bead, which was known as PGPR. When tomato seedlings were treated with A. woluwensis ED of $1{\times}10^6$ cells g $soil^{-1}$ and incubated for 30 days in a plant growth chamber, the shoot length, root length, fresh weight and dry weight of the grown tomato plants treated with the suspended inoculants significantly increased by 36.2, 59, 51.1, and 37.5%, respectively compared to those of the uninoculated control. The treatment of the immobilized bacteria increased those by 42, 67.4, 62.5, and 60.4%, respectively compared to those of the uninoculated control. Therefore, the enhancement of tomato growth by the treatment of the immobilized bacteria was higher than those by the suspended inoculants. The effects of the inoculation on indigenous bacterial community and the fate of the inoculated bacteria were monitored by denaturing gradient gel electrophoresis analysis. The DNA band intensity of A. woluwensis ED in the tomato rhizosphere treated with the suspended inoculants continuously decreased after the inoculation, but the band intensity in the tomato rhizosphere soils treated with the immobilized inoculants showed the maximum at 1 week after inoculation and the decreasing rate was less than that of the suspended inoculants, which indicated the longer maintenance of the immobilized bacteria at rhizosphere soils. Therefore, encapsulation of PGPR in alginate beads may be more effective than liquid inoculant for the plant growth promotion and survival of PGPR at plant rhizosphere.

Comparison of Treatment Effect of Domestically Distributed Major Silage Inoculant

  • Young Sang Yu;Yan Fen Li;Xaysana Panyavong;Li Zhunang Wu;Jeong Ung Hwang;Li Li Wang;Hak Jin Kim;Won Jin Lee;Jong Geun Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.1
    • /
    • pp.50-57
    • /
    • 2024
  • Silage inoculants, crucial in modern silage production, comprise beneficial microorganisms, primarily lactic acid bacteria (LAB), strategically applied to forage material during ensiling. This study aimed to compare the effectiveness of various inoculants produced by different companies. Five treatments were evaluated, including a control group: T1 (Lactobacillus plantarum), T2 (Lactobacillus plantarum + Pediococcus pentosaceus), T3 (Lactobacillus plantarum + Pediococcus pentosaceus + Lactobacillus buchneri), T4 (Lactobacillus plantarum + Lactobacillus acidophilus + Lactobacillus bulgaricus), and T5 (Lactobacillus plantarum + Pediococcus pentosaceus + Enterococcus faecium). Italian ryegrass was harvested at the heading stage and treated with these silage inoculants. Samples were collected over a 60-day ensiling period. Co-inoculation with L. plantarum and P. pentosaceus (T2) resulted in significantly higher CP compared to the control group co-inoculation exhibited with resulted in Lactobacillus plantarum and Pediococcus pentosaceus in the T2 treatment exhibited higher CP content of 106.35 g/kg dry matter (DM). The T3 treatment, which included heterofermentative bacterial strains such as Lactobacillus buchneri, exhibited an increase in acetic acid concentration (11.15 g/kg DM). In the T4 treatment group, which utilized a mixed culture of Lactobacillus acidophilus and Lactobacillus bulgaricus, the NH3-N/TN content was observed to be the lowest (20.52 g/kg DM). The T5 containing Enterococcus faecium had the highest RFV (123) after 60 days. Expanding upon these findings, the study underscores not only the beneficial effects of particular inoculant treatments on silage quality but also underscores the potential of customized inoculation strategies in maximizing nutrient retention and overall silage preservation.