• Title/Summary/Keyword: Bacterial inhibition

Search Result 646, Processing Time 0.03 seconds

Inhibitory Effects of Temperature, pH, and Potassium Sorbate against Natural Microflora in Strawberry Paste during Storage (저장중 온도, pH, potassium sorbate를 이용한 딸기 paste의 natural microflora의 증식억제 효과)

  • Cho, Joon-Il;Ha, Sang-Do;Kim, Keun-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.355-360
    • /
    • 2004
  • Residual contamination levels of natural microflora in strawberries were evaluated. Approximate counts of total aerobic mesophilic bacteria, total coliforms, and lactic acid bacteria were 8, 2, and 3 log CFU/g, respectively, whereas those of Escherichia coli and yeasts/molds were under the detection limit (<10 cells/g). Growth inhibition degrees of total aerobic mesophilic bacteria, total coliforms, and lactic acid bacteria were also evaluated based on three hurdles of preservative, storage temperature, and pH of strawberry paste prepared as model system. Strawberry paste was stored at low ($4^{\circ}C$), room ($20^{\circ}C$), and high ($37^{\circ}C$) temperatures. Potassium sorbate was added as a preservative up to 0.1%. Acidity of strawberry paste was adjusted to pH 4 or 7. During 7-day storage, inhibitory effects of the hurdles against bacterial groups were: storage temperature > pH of strawberry paste > addition of potassium sorbate. Combination of three hurdles most effectively inhibited growth of residual microflora.

Salmonella typhimurium LPS Confers Its Resistance to Antibacterial Agents of Baicalin of Scutellaria baicalensis George and Novobiocin: Complementation of the rfaE Gene Required for ADP-L-glycero-D-manno-heptose Biosynthesis of Lipopolysaccharide

  • Chung, Tae-Wook;Jin, Un-Ho;Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.564-570
    • /
    • 2003
  • The antibacterial mechanism of enterobacter Salmonella typhimurium was studied. The rfa (Waa) gene cluster of S. typhimurium encodes the core oligosaccharide biosynthesis of lipopolysaccharide (LPS). Among the rfa gene cluster, we recently cloned the rfaE gene, which is involved in ADP-L-glycero-D-manno-heptose biosynthesis. The rfaE mutant synthesizes heptose-deficient LPS, which consists of only lipid A and 3-deoxy-D-manno-octulosonic acid (KDO), thus making an incomplete LPS and a rough phenotype mutant. S. typhimurium deep-rough mutants with the heptose region of the inner core show a reduced growth rate, sensitivity to high temperature, and hypersensitivity to hydrophobic antibiotics such as baicalin isolated from the medicinal herb of Scutellaria baicalensis Georgi. Thus, in this study, the cloned rfaE gene was added to the S. typhimurium rfaE mutant strain SL1102 (rfaE543), which makes heptose-deficient LPS and has a deep-rough phenotype. The complementation created a smooth phenotype in the SL1102 strain. The sensitivity of SL1102 to bacteriophages was also recovered to that of wild-type strain, indicating that LPS is used as the receptor for bacteriophage infection. The permeability barrier of SL1102 to hydrophobic antibiotics such as novobiocin and baicalin was restored to that of the wild-type, suggesting that antibiotic resistance of the wild-type strain is highly correlated with their LPS. Through an agar diffusion assay, the growth-inhibition activity of baicalin was fully observed in the mutant SL1102 strain. However, only a half of the inhibitory activity was detected in the rfaE complemented SL1102 strain. Furthermore, the LPS produced by the rfaE-complemented SL1102 strain was indistinguishable from LPS biosynthesis of smooth strains.

Hemolytic Properties of Tolaasin Causing the Brown Blotch Disease on Oyster Mushroom (느타리버섯 갈반병 원인독소 Tolaasin의 용혈특성)

  • Cho, Kwang-Hyun;Park, Kyoung-Sun;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.190-195
    • /
    • 2000
  • Tolaasin is a peptide toxin produced by Pseudomonas tolaasii and causes a brown blotch disease forming brown, slightly sunken spots and blotches on the cultivated mushrooms. It is a lipodepsipeptide consisting of 18 amino acids and its molecular mass is 1,985 Da. It forms a pore in plasma membranes, resulting in the disruption of membranes of fungal, bacterial, plant, and animal cells as well as mushroom tissue. In order to measure the toxicity of tolaasin, erythrocytes of blood were used to evaluate the tolaasin-induced hemolysis. Hemolytic activity of tolaasin was measured by observing the absorbance change either at 420 nm, representing the release of hemoglobins from red blood cells(RBCs), or at 600 nm, representing the density of residual cells. The hemolytic activity of culture-extract of P. tolaasii increased at early-stationary phase of growth and was maximal at late stationary phase. The hemolytic activity of tolaasin appeared high in the RBCs of dog and rat. The RBCs of rabbit and hen were less susceptible to tolaasin. The effects of various cations were also measured. $Cd^{2+}$ and $La^{3+}$. as well as $Zn^{2+}$ appeared inhibitory to the tolaasin-induced hemolysis. The effects of various anions on tolaasin-induced hemolysis were measured and carbonate showed the greatest inhibition to the hemolysis. However, phosphate stimulated the tolaasin-induced hemolysis and no effects were observed by chloride and nitrate.

  • PDF

Antifungal Activity of Benzoic Acid from Bacillus subtilis GDYA-1 against Fungal Phytopathogens (Bacillus subtilis GDYA-1로부터 분리한 benzoic acid의 식물병원성 곰팡이에 대한 항균활성)

  • Yoon, Mi-Young;Seo, Kook-Hwa;Lee, Sang-Heon;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Cha, Byeong-Jin;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • A bacterial strain antagonistic to some fungal phytopathogens was isolated from the stem of a Persimmon tree in Yeongam, Korea. This bacterium was identified as Bacillus subtilis by 16S rRNA gene sequencing and designated as B. subtilis GDYA-1. In in vivo experiment, the fermentation broth exhibited antifungal activities against Magnaporthe oryzae on rice plants, Phytophthora infestans on tomato plants, and Puccinia recondita on wheat plants. We isolated one antifungal compound and its chemical structure was determined by mass and $^1H$-NMR spectral data. The antifungal substance was identified as benzoic acid. It inhibited mycelial growth of M. oryzae, Rhizoctonia solani, Sclerotinia sclerotiorum, and P. capsici with minimum inhibition concentration (MIC) values, ranging from 62.5 to 125 ${\mu}g/ml$. Moreover, the substance effectively suppressed Phytophthora blight of red pepper caused by P. capsici in a pot experiment. To the author's knowledge, this is the first report on the antifungal activity of benzoic acid against phytopathogenic fungi. Benzoic acid and B. subtilis GDYA-1 may contribute to environmental-friendly protect crops from phytopathogenic fungi.

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol;Lee, Shinyoung;Park, Bokyung;Choi, Wonkyun;Kim, Chanmin;Lee, Sanghun;Chung, Woo Sik;Lee, Sang Yeol;Sabir, Jamal;Bressan, Ray A.;Bohnert, Hans J.;Mengiste, Tesfaye;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.40-50
    • /
    • 2015
  • In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.

Characterization as Cosmetic Substances of Chestnut Inner Skin Extracts with Antioxidant Activity (항산화 활성을 갖는 율피 추출물의 향장 소재 특성)

  • Jeong, Hee-Rok;Kim, Ji-Hye;Jo, Yu-Na;Jeong, Ji-Hee;Heo, Ho Jin
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.183-191
    • /
    • 2011
  • We investigated characterization as cosmetic substances of chestnut inner skin extracts with in vitro antioxidant activity. Total phenolics of various extracts from chestnut inner skin were the highest 60% methanol (164.82 mg/g), and ethyl acetate fractions (191.14 mg/g). We found that the both samples from chestnut inner skin dose-dependently increased in vitro antioxidant activities (DPPH radical scavenging activity and inhibition of lipid peroxidation). In addition, the both samples also showed a strong UV absorption in the range of UV-B (290-320 nm). Especially the 60% ethanol extracts presented higher inhibitory effect on elastase (46.40% at $100{\mu}g/mL$) than that of the ethyl acetate fractions, so that it showed in vitro anti-wrinkle activity. Finally, the 60% methanol extracts and ethyl acetate fractions showed anti-bacterial activity against skin pathogenic bacteria. Consequently, these results suggest that the chestnut inner skin can be used for cosmetic industry.

Antimicrobial Activity Screening of Sixty-four Evergreen Woody Species According to Extraction Conditions against Trichophyton mentagrophytes (상록성 목본 64종의 추출조건에 따른 무좀원인균의 항균활성 스크리닝)

  • Jang, Bo Kook;Chi, Lai Won;Cho, Ju Sung;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.330-341
    • /
    • 2018
  • This study was performed to investigate and measure the antimicrobial activity of evergreen woody species extracts on Trichophyton mentagrophytes. To do this, leaves and stems were collected from Wando and Jeju islands, and were used for the extraction with different solvents (i.e., distilled water, 80% ethanol, and 100% methanol), and at different ultrasonic extracting times (i.e., 15, 30, and 45 minutes). The experiment was conducted by using the agar diffusion method. The clear zone was measured after incubating the paper disc containing the plant extract in a bacterial culture medium. The controls were synthetic antimicrobials, methylparaben and phenoxyethanol, at concentrations of 0.4, 1, 2, and 4 mg/disc. Altogether, extracts of 56 out of 64 species used in this study had inhibitory activity, which confirmed their antimicrobial activity against Athlete's foot. Among them, the crude ethanolic extract of Elaeocarpus sylvestris in 45 min showed a zone of inhibition < 20.2 mm, while the clear zone of Actinodaphne lancifolia ethanolic extraction for 30 min was 23.5 mm. Also, Quercus acuta, Dendropanax morbiferus and Daphne odora showed clear zones of 28.0 mm (45 minutes ethanolic extraction), 20.5 mm (45 minutes crude methanolic extraction) and 19.7 mm (45 minutes methanolic extraction), respectively. Thus, these results confirm that the extracts of evergreen woody species have therapeutic potential against Athlete's foot, and suggest that in order to extract adequate amounts of antimicrobial substance from the plant sources, ideal extraction condition has to be considered.

Inhibition Effect of Bacillus subtilis on 365 nm UV-LED Irradiation According to Packaging Materials (포장재 조건에 따른 365 nm UV-LED 조사의 Bacillus subtilis 생육 억제 효과)

  • Lee, Da-Hye;Jeong, So-Mi;Xu, Xiaotong;Kim, Koth-Bong-Woo-Ri;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.332-336
    • /
    • 2019
  • The use of ultraviolet (UV) spectroscopy for foods is known to have a microbial inhibitory effect. UV-A having a longer wavelength than UV-C can be used for continuous or intermittent UV irradiation of food stored in containers or packages. Because UV-LED can be used effectively at a low price, this study reported the effect of UV-A 365 nm-LED on inhibiting Bacillus subtilis in accordance with the packaging conditions employed in daily use. The packaging materials were linear low-density polyethylene (LLD-PE), nylon/low density polyethylene (LDPE), polystyrene, and glass. When all packaging materials were treated with 365 nm UV-LED, B. subtilis was observed to remain inactive for 30-60 min. Further, compared with the control (-log 5), the survival rate of B. subtilis was -log 2.0-2.5 for nylon/LDPE and -log 2.58-3.61 for LLD-PE. These packaging materials showed an excellent inhibitory effect regardless of their thickness. Typically, a decrease in the viable cell count of more than 3 log indicates a 99.9% bactericidal effect. These results suggest that 365 nm UV-LED permeated the packaging material and inhibited bacterial growth.

Suppressive effect of Senecio iscoensis Hieron. extract in Propionibacterium acnes-induced inflammatory signaling pathway (Senecio iscoensis Hieron. 추출물의 Propionibacterium acnes에 의한 염증반응 억제효과)

  • Shin, Jin Hak;Lee, Eun Hye;Kim, Seon Sook;Yi, Dong-Keun;Roh, Jin Kyung;Seo, Su Ryeon
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.206-212
    • /
    • 2019
  • Propionibacterium acnes (P. acnes) lives in the hair follicles and pores, and it uses cell debris, sebum and metabolic byproducts of surrounding skin tissues as energy and nutrients. Increased production of sebum due to sebaceous hyperplasia or blockage of the follicle can cause growth and proliferation of P. acnes. The rapid growth of P. acnes in follicles produces cell damage, metabolic byproducts and bacterial chips, which can cause inflammation. In this study, we examined the possibility of Senecio iscoensis Hieron. (S. iscoensis) extract to regulate P. acnes-induced inflammatory signaling pathways. We observed that S. iscoensis extract effectively inhibited P. acnes-induced pro-inflammatory cytokine expressions such as IL-$1{\beta}$, TNF-${\alpha}$, and iNOS in mouse macrophage cell line Raw 264.7. The inhibitory effect of S. iscoensis in pro-inflammatory cytokine levels was accompanied by the inhibition of the transcription factors NF-${\kappa}B$ and NF-AT. However, S. iscoensis did not alter the P. acnes-induced MAPK signaling pathways. This study first suggests the potential of using S. iscoensis extract as an alternative agent for the treatment of acne.

Antimicrobial activities of Bacillus subtilis DS660 and Paenibacillus polymyxa DS842 (Bacillus subtilis DS660과 Paenibacillus polymyxa DS842의 항균활성)

  • Lee, Da-Sol;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.354-361
    • /
    • 2018
  • This study was carried out to isolate soil bacteria with antimicrobial activity and evaluate antimicrobial substances produced by isolated bacteria. Among many isolates Bacillus subtilis DS660 and Paenibacillus polymyxa DS842 showed high antimicrobial activities against 6 species of microbial residents on human skin and 3 species of pathogenic bacteria. DS660 and DS842 showed 15.3~26.8 and 11.3~27.5 mm of inhibition zone diameter, respectively on nutrient agar medium against most target bacteria and fungi. DS660 and DS842 produced $57{\pm}8$ and $170{\pm}15{\mu}mol/ml$ of siderophore, respectively as an antimicrobial substance. Analysis of ethyl acetate extract of culture supernatants of DS660 and DS842 suggested production of glycolipid biosurfactant which reduced surface tension of culture supernatant of DS660 and DS842 from 60.0 to 40.3 and 30.3 mN/m, respectively. DS660 and DS842 also showed $169.2{\pm}9.9$ and $357.2{\pm}13.7nmol/min/mg$ protein of ${\beta}-1,3$-glucanase activity, respectively, and hydrolyzed cell wall components of 3 bacterial species. These results suggest that B. subtilis DS660 and P. polymyxa DS842 may be utilized as an environment-friendly biocontrol agent against some skin microbes and pathogenic bacteria.