• Title/Summary/Keyword: Bacterial growth-inhibiting activity

Search Result 59, Processing Time 0.031 seconds

Isolation and Characterization of an Antifungal and Plant Growth-Promoting Microbe

  • Park, Se Won;Yang, Hee-Jong;Seo, Ji Won;Kim, Jinwon;Jeong, Su-ji;Ha, Gwangsu;Ryu, Myeong Seon;Yang, Hee Gun;Jeong, Do-Youn;Lee, Hyang Burm
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.441-454
    • /
    • 2021
  • Fungal diseases including anthracnose, stem rot, blight, wilting, and root rot of crops are caused by phytopathogens such as Colletotrichum species, Sclerotinia sclerotiorum, Phytophthora species, and Fusarium oxysporum and F. solani which threaten the production of chili pepper. In this study, to identify biological control agents (BCAs) of phytopathogenic fungi, potentially useful Bacillus species were isolated from the field soils. We screened out five Bacillus strains with antagonistic capacity that are efficiently inhibiting the growth of phytopathogenic fungi. Bacillus species were characterized by the production of extracellular enzymes, siderophores, and indole-3-acetic acid (IAA). Furthermore, the influence of bacterial strains on the plant growth promoting activity and seedling vigor index were assessed using Brassica juncea as a model plant. Inoculation with Bacillus subtilis SRCM 121379 significantly increased the length of B. juncea shoots and roots by 45.6% and 52.0%, respectively. Among the bacterial isolates, Bacillus subtilis SRCM 121379 showed the superior enzyme activities, antagonistic capacity and plant growth promoting effects. Based on the experimental results, Bacillus subtilis SRCM 121379 (GenBank accession no. NR027552) was finally selected as a BCA candidate.

Growth-inhibiting Effects of Juniperus virginiana Leaf-Extracted Components toward Human Intestinal Bacteria

  • Kim, Moo-Key;Kim, Young-Mi;Lee, Hoi-Seon
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.164-167
    • /
    • 2005
  • The growth responses of materials extracted from Juniperus virginiana leaves against Bifidobacterium bifidum, B. longum, Clostridium perfringens, Escherichia coli, Lactobacillus acidophilus, L. casei, and Streptococcus mutans were examined using impregnated paper disk agar diffusion. The biologically active constituent isolated from the J. virginiana extracts was characterized as ${\alpha}$-cedrene using various spectroscopic analyses including IR, EI-MS, and NMR. The responses varied according to the dose, chemicals, and bacterial strain tested. Methanol extracts of J. virginiana leaves exhibited a strong and moderate inhibitory activity against C. perfringens and E. coli at 5 mg/disk, respectively. However, in tests conducted with B. bifidum, B. longum, L. acidophilus, L. casei, and S. mutans, the methanol extracts showed no or weak inhibitory response. At 2 mg/disk, a-cedrene strongly inhibited the growth of C. perfringens and moderately inhibited the growth of E. coli and S. mutans, without any adverse effects on the growth of four lactic acid-bacteria. Of the commercially available compounds originating from J. virginiana leaves, cedrol and ${\alpha}$-pinene exhibited strong and moderate growth inhibition against C. perfringens, and ${\alpha}$-copaene revealed moderate growth inhibition against E. coli at 1 mg/disk. Furthermore, cedrol exhibited moderate and weak growth inhibition against S. mutans at 2 and 1 mg/disk, respectively. However, little or no activity was observed for camphene, (+)-2-carene, p-cymene, limonene, linalool, and a-phellandrene against B. bifidum, B. longum, C. perfringens, L. acidophilus, L. casei, and S. mutans at 2 mg/disk. The observed inhibitory activity of the J. virginiana leaf-extracted materials against C. perfringens, E. coli, and S. mutans may be an indication of at least one of the pharmacological actions of the J. virginiana leaf.

Direct Antimicrobial Activity and Induction of Systemic Resistance in Potato Plants Against Bacterial Wilt Disease by Plant Extracts

  • Hassan, M.A.E.;Bereika, M.F.F.;Abo-Elnaga, H.I.G.;Sallam, M.A.A.
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.352-360
    • /
    • 2009
  • The potential of three plants extracts, to protect potato plants against bacterial wilt caused by Ralstonia solanacearum was determined under greenhouse and field conditions. All soil drenching treatments of aqueous plant extracts of Hibsicus sabdariffa, Punica granatum and Eucalyptus globulus significantly reduced the disease severity compared with inoculated control. Although the applications of all three plant extracts resulted in similar reductions of disease severity in field up 63.23 to 68.39%, treatment of E. globulus leaf extract was found greater in restricting the symptom development than other the two plant extracts in the greenhouse. More than 94% reduction in the bacterial wilt symptom was observed in potato plants. All tested plant extracts were effective in inhibiting the growth of bacterial pathogen, not only in vitro, but also in stem of potato plants as compared with the inoculated control Potato plants treated with extract of H. sabdariffa reduced bacterial growth more effectively than treatment with P. granatum and E. globulus. Activity of defence-related enzymes, including peroxidase, polyphenoloxidase and phenylalanine ammonia lyase, were significantly increased in plants treated with the plant extracts compared to the control during the experimental period. In general, the higher enzymes activities were determined in both inoculated and non-inoculated treated potato plants after 8 days from plant extracts treatment. These results suggested that these plant extracts may be play an important role in controlling the potato bacterial wilt disease, through they have antimicrobial activity and induction of systemic resistance in potato plants.

Antimicrobial Properties of Cold-Tolerant Eucalyptus Species against Phytopathogenic Fungi and Food-Borne Bacterial Pathogens

  • Hur, Jae-Seoun;Ahn, Sam-Young;Koh, Young-Jin;Lee, Choong-Il
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.286-289
    • /
    • 2000
  • Mechanol extracts of three cold-tolerant eucalyptus trees-Eucalyptus darlympleana, E. gunnii and E. unigera were screened for antimicrobial activity against twenty two phyto-pathogenic fungi and six food-borne bacterial pathogens. E. unigera showed the antagonistic activity against all the tested pathogens. Among the tested fungal pathogens, Pythium species were highly sensitive to the leaf extracts. Especially, P. vanterpoolii, a causal agent of leaf blight in creeping bentgrass (Agrostis palustris), was completely inhibited by the extracts. The eucalyptus extracts were also effective in inhibiting the fungal growth of Botrytis cinerea and Phomopsis sp. isolated from the lesions of kiwifruit soft rot during post-harvest storage. Escherichia coli O-157 was less sensitive to the inhibition than the other bacterial pathogens tested. It was likely that Gram positive bacteria-Bacillus subtilis and Streptococcus mutans were more sensitive to the eucalyptus extracts than Gram negative bacteria-Escherichia coli, Salmonella enteritidis and Pseudomonas aeruginosa. Our findings suggest that the cold-tolerant eucalyptus species have antimicrobial properties that can serve the development of novel fungitoxic agents or food preservatives.

  • PDF

Antimicrobial Activity of the Cell Organelles, Lysosomes, Isolated from Egg White

  • Yoon, Ji-Hee;Park, Jae-Min;Kim, Ki-Ju;Kim, Yang-Hoon;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1364-1368
    • /
    • 2009
  • Lysosomes, as a cell organelle type, are safe biological control agents that may be possible replacements for chemical antimicrobial agents because they are simply isolated from egg white. In this study, it was found that the lysosomes isolated from egg white exhibited pH-dependent antimicrobial activity, with the optimal activity found at pH 6.0. The efficiency of lysosomes in inhibiting bacterial growth and activity was evaluated over a 12-h treatment period. Seven different microorganisms were used as bacterial strains, and the lysosomes showed a significant antimicrobial effect against all strains. In addition, the antimicrobial activity was maintained for 100 days, and there did not appear to be any resistance of E. coli to the lysosomal activity up to the eighth culture. However, the lysosomes did not affect the viability of mammalian cells, suggesting the biocompatibility of lysosomes. These highly effective lysosomes have a bright future in the application of novel antimicrobial sources as a cell organelle type.

Biological Activities of Essential Oils from Angelica tenuissima Nakai

  • Roh, Junghyun;Shin, Seungwon
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.297-302
    • /
    • 2013
  • The current study was conducted to evaluate the antibacterial and antioxidant activities of the essential oil fraction from the roots of Angelica tenuissima Nakai and its main components. We extracted the essential oil fraction from the roots of A. tenuissima using steam distillation and isolated its main components. Their antibacterial activities were determined by broth dilution test against food-borne pathogenic bacteria. Antioxidant activities were evaluated by DPPH-scavenging assay and reducing-power test. Also tested was their ability to inhibit the growth of two gastrointestinal cancer cell lines, Caco-2 and MKN-45. The A. tenuissima oil fraction and its main components, ligustilide and butylidene phthalide exhibited marked inhibitory effects against most of the tested antibiotic-susceptible and antibiotic-resistant bacterial strains with minimum inhibiting concentrations (MICs) from $0.21{\pm}0.08$ to $3.60{\pm}0.89mg/ml$. They also showed growth-inhibiting activity against Caco-2 and MKN-45 cells. The oil fraction showed significant antioxidant activities in DPPH radical scavenging assay and reducing-power test. Taken together, A. tenuissima essential oil could be used as a safe additive for preventing food contamination by pathogenic bacteria. Additionally, its antioxidative activity and the ability to inhibit gastrointestinal carcinoma cell lines could increase its value for functional foods and prevention of cancer.

Purification and Characterization of an Antibacterial Substance from Aerococcus urinaeequi Strain HS36

  • Sung, Ho Sun;Jo, Youl-Lae
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.93-100
    • /
    • 2020
  • A bacterial strain inhibiting the growth of Vibrio anguillarum, the causative agent of vibriosis, was isolated from fish intestines. The isolated strain HS36 was identified as Aerococcus urinaeequi based on the characteristics of the genus according to Bergey's Manual of Systematic Bacteriology and by 16S rRNA sequencing. The growth rate and antibacterial activity of strain HS36 in shaking culture were higher than those in static culture, while the optimal pH and temperature for antibacterial activity were 7.0 and 30℃, respectively. The active antibacterial substance was purified from a culture broth of A. urinaeequi HS36 by Sephadex G-75 gel chromatography, Sephadex G-25 gel chromatography, and reverse-phase high-performance liquid chromatography. Its molecular weight, as estimated by Tricine SDS-polyacrylamide gel electrophoresis, was approximately 1,000 Da. The antibacterial substance produced by strain HS36 was stable after incubation for 1 h at 100℃. Although its antibacterial activity was optimal at pH 6-8, activity was retained at a pH range from 2 to 11. The purified antibacterial substance was inactivated by proteinase K, papain, and β-amylase treatment. The newly purified antibacterial substance, classified as a class II bacteriocin, inhibited the growth of Klebsiella pneumoniae, Salmonella enterica, and Vibrio alginolyticus.

Increasing the Flow of Protein from Ruminal Fermentation - Review -

  • Wallace, R.J.;Newbold, C.J.;Bequette, B.J.;MacRae, J.C.;Lobley, G.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.885-893
    • /
    • 2001
  • This review summarizes some recent research into ways of improving the productivity of ruminal fermentation by increasing protein flow from the rumen and decreasing the breakdown of protein that results from the action of ruminal microorganisms. Proteinases derived from the plant seem to be of importance to the overall process of proteolysis in grazing animals. Thus, altering the expression of proteinases in grasses may be a way of improving their nutritive value for ruminants. Inhibiting rumen microbial activity in ammonia formation remains an important objective: new ways of inhibiting peptide and amino acid breakdown are described. Rumen protozoa cause much of the bacterial protein turnover which occurs in the rumen. The major impact of defaunation on N recycling in the sheep rumen is described. Alternatively, if the efficiency of microbial protein synthesis can be increased by judicious addition of certain individual amino acids, protein flow from ruminal fermentation may be increased. Proline may be a key amino acid for non-cellulolytic bacteria, while phenylalanine is important for cellulolytic species. Inhibiting rumen wall tissue breakdown appears to be an important mechanism by which the antibiotic, flavomycin, improves N retention in ruminants. A role for Fusobacterium necrophorum seems likely, and alternative methods for its regulation are required, since growth-promoting antibiotics will soon be banned in many countries.

Plant Growth Promotion and Biocontrol Potential of Various Phytopathogenic Fungi Using Gut Microbes of Allomyrina dichotoma Larva (장수풍뎅이 유충의 장내 미생물을 이용한 다양한 식물 균류병의 생물적 방제 및 생장촉진)

  • Kim, Joon-Young;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.210-221
    • /
    • 2020
  • This research was executed to select beneficial antagonists from digestive organ of Allomyrina dichotoma larva that can be put on environment friendly control against phytopathogenic fungi. We screened 38 bacterial strains inhibiting mycelial growth against eight plant pathogens through dual culture assay. The 10 strains among 38 bacterial strains were selected as beneficial microbes showing antifungal activity against Botrytis cinerea, Plasmodiophora brassicae, Colletotrichum acutatum and Phytophthora capsici through under greenhouse pot trials. The 10 bacterial strains that shown strongest antifungal activity were classified into 3 genera and 10 species, and identified as the genus Bacillus (DM146, DM152, DH2, and DH16), Paenibacillus (DF30, DH14, and DM142) and Streptomyces (DF137, DM48, and DH92) by morphological characteristics and 16s rRNA gene sequence. The 10 bacterial strains had solubilizing activity of insoluble phosphates, production of IAA (indole-3-acetic acid), β-1,3-glucanase and protease. Among the 10 bacterial strains, DM152 strain was produced significant enhancement of all growth parameters of chili pepper and tomato seedlings under greenhouse condition. Thus, this study demonstrated that gut microbes of Allomyrina dichotoma larva will be useful as a potential biocontrol agent against plant pathogens and biofertilizer.

Methyl-Branched Fatty Acids, Inhibitors of Enoyl-ACP Reductase with Antibacterial Activity from Streptomyces sp. A251

  • Zheng, Chang-Ji;Sohn, Mi-Jin;Chi, Seung-Wook;Kim, Won-Gon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.875-880
    • /
    • 2010
  • Bacterial enoyl-ACP reductase (FabI) has been demonstrated to be a novel antibacterial target. In the course of our screening for FabI inhibitors, we isolated two methyl-branched fatty acids from Streptomyces sp. A251. They were identified as 14-methyl-9(Z)-pentadecenoic acid and 15-methyl-9(Z)-hexadecenoic acid by MS and NMR spectral data. These compounds inhibited Staphylococcus aureus FabI with $IC_{50}$ values of 16.0 and $16.3\;{\mu}M$, respectively, but did not affect FabK, an enoyl-ACP reductase of Streptococcus pneumonia, at $100\;{\mu}M$. Consistent with their selective inhibition for FabI, they blocked intracellular fatty acid synthesis as well as the growth of S. aureus, but did not inhibit the growth of S. pneumonia. Additionally, these compounds showed reduced antibacterial activity against fabI-overexpressing S. aureus, compared with the wild-type strain. These results demonstrate that the methylbranched fatty acids show antibacterial activity by inhibiting FabI in vivo.