• Title/Summary/Keyword: Bacterial diversity

Search Result 553, Processing Time 0.025 seconds

Diversity Analysis of Lactic Acid Bacteria in Takju, Korean Rice Wine

  • Jin, Jianbo;Kim, So-Young;Jin, Qing;Eom, Hyun-Ju;Han, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1678-1682
    • /
    • 2008
  • To investigate lactic acid bacterial population in Korean traditional rice wines, biotyping was performed using cell morphology and whole-cell protein pattern analysis by SDS-PAGE, and then the isolates were identified by 16S rRNA sequencing analysis. Based on the morphological characteristics, 103 LAB isolates were detected in wine samples, characterized by whole-cell protein pattern analysis, and they were then divided into 18 patterns. By 16S rRNA gene sequencing, the isolates were identified as Lactobacillus paracasei, Lb. arizonensis, Lb. plantarum, Lb. harbinensis, Lb. parabuchneri, Lb. brevis, and Lb. hilgardii when listed by their frequency of occurrence. It was found that the difference in bacterial diversity between rice and grape wines depends on the raw materials, especially the com position of starch and glucose.

Comparison of Microbial Community Structure in Kiwifruit Pollens

  • Kim, Min-Jung;Jeon, Chang-Wook;Cho, Gyongjun;Kim, Da-Ran;Kwack, Yong-Bum;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.143-149
    • /
    • 2018
  • Flowers of kiwifruit are morphologically hermaphroditic and survivable binucleate pollen is produced by the male flowers. In this study, we investigated microbial diversity in kiwifruit pollens by analyzing amplicon sequences of 16S rRNA. Four pollen samples were collected: 'NZ' was imported from New Zealand, 'CN' from China in year of 2014, respectively. 'KR13' and 'KR14' were collected in 2013' and 2014' in South Korea. Most of the identified bacterial phyla in the four different pollens were Proteobacteria, Actinobacteria and Firmicutes. However, the imported and the domestic pollen samples showed different aspects of microbial community structures. The domestic pollens had more diverse in diversity than the imported samples. Among top 20 OTUs, Pseudomonas spp. was the most dominant specie. Interestingly, a bacterial pathogen of kiwifruit canker, Pseudomonas syringae pv. actinidiae was detected in 'NZ' by the specific PCR. This study provides insights microbial distribution and community structure information in kiwifruit pollen.

Diversity of Denitrifying Bacteria Isolated from Daejeon Sewage Treatment Plant

  • Lim Young-Woon;Lee Soon-Ae;Kim Seung Bum;Yong Hae-Young;Yeon Seon-Hee;Park Yong-Keun;Jeong Dong-Woo;Park Jin-Sook
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.383-390
    • /
    • 2005
  • The diversity of the denitrifying bacterial populations in Daejeon Sewage Treatment Plant was examined using a culture-dependent approach. Of the three hundred and seventy six bacterial colonies selected randomly from agar plates, thirty-nine strains that showed denitrifying activity were selected and subjected to further analysis. According to the morphological and biochemical properties, the thirty nine isolates were divided into seven groups. This grouping was supported by an unweighted pair group method, using an arithmetic mean (UPGMA) analysis with fatty acid profiles. Restriction pattern analysis of 16S rDNA with four endonucleases (AluI, BstUI, MspI and RsaI) again revealed seven distinct groups, consistent with those defined from the morphological and biochemical properties and fatty acid profiles. Through the phylogenetic analysis using the 16S rDNA partial sequences, the main denitrifying microbial populations were found to be members of the phylum, Proteobacteria; in particular, classes Gammaproteobacteria (Aeromonas, Klebsiella and Enterobacter) and Betaproteobacteria (Acidovorax, Burkholderia and Comamonas), with Firmicutes, represented by Bacillus, also comprised a major group.

Influence of Companion Planting on Microbial Compositions and Their Symbiotic Network in Pepper Continuous Cropping Soil

  • Jingxia Gao;Fengbao Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.760-770
    • /
    • 2023
  • Continuous cropping obstacles have become a serious factor restricting sustainable development in modern agriculture, while companion planting is one of the most common and effective methods for solving this problem. Here, we monitored the effects of companion planting on soil fertility and the microbial community distribution pattern in pepper monoculture and companion plantings. Soil microbial communities were analyzed using high-throughput sequencing technology. Companion plants included garlic (T1), oat (T2), cabbage (T3), celery (T4), and white clover (T5). The results showed that compared with the monoculture system, companion planting significantly increased the activities of soil urease (except for T5) and sucrase, but decreased catalase activity. In addition, T2 significantly improved microbial diversity (Shannon index) while T1 resulted in a decrease of bacterial OTUs and an increase of fungal OTUs. Companion planting also significantly changed soil microbial community structures and compositions. Correlation analysis showed that soil enzyme activities were closely correlated with bacterial and fungal community structures. Moreover, the companion system weakened the complexity of microbial networks. These findings indicated that companion plants can provide nutrition to microbes and weaken the competition among them, which offers a theoretical basis and data for further research into methods for reducing continuous cropping obstacles in agriculture.

Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity

  • Soriano, Alvin P.;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Jeong, Chang Dae;Bae, Gui Seck;Chang, Moon Baek;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1562-1570
    • /
    • 2014
  • The effects of Lactobacillus mucosae (L. mucosae), a potential direct fed microbial previously isolated from the rumen of Korean native goat, on the rumen fermentation profile of brewers grain were evaluated. Fermentation was conducted in serum bottles each containing 1% dry matter (DM) of the test substrate and either no L. mucosae (control), 1% 24 h broth culture of L. mucosae (T1), or 1% inoculation with the cell-free culture supernatant (T2). Each serum bottle was filled anaerobically with 100 mL of buffered rumen fluid and sealed prior to incubation for 0, 6, 12, 24, and 48 h from which fermentation parameters were monitored and the microbial diversity was evaluated. The results revealed that T1 had higher total gas production (65.00 mL) than the control (61.33 mL) and T2 (62.00 mL) (p<0.05) at 48 h. Consequently, T1 had significantly lower pH values (p<0.05) than the other groups at 48 h. Ammonia nitrogen ($NH_3$-N), individual and total volatile fatty acids (VFA) concentration and acetate:propionate ratio were higher in T1 and T2 than the control, but T1 and T2 were comparable for these parameters. Total methane ($CH_4$) production and carbon dioxide ($CO_2$) were highest in T1. The percent DM and organic matter digestibilities were comparable between all groups at all times of incubation. The total bacterial population was significantly higher in T1 (p<0.05) at 24 h, but then decreased to levels comparable to the control and T2 at 48 h. The denaturing gradient gel electrophoresis profile of the total bacterial 16s rRNA showed higher similarity between T1 and T2 at 24 h and between the control and T1 at 48 h. Overall, these results suggest that addition of L. mucosae and cell-free supernatant during the in vitro fermentation of dried brewers grain increases the VFA production, but has no effect on digestibility. The addition of L. mucosae can also increase the total bacterial population, but has no significant effect on the total microbial diversity. However, inoculation of the bacterium may increase $CH_4$ and $CO_2$ in vitro.

16S rDNA Analysis 9f Bacterial Diversity in Three Fractions of Cow Rumen

  • Cho, Soo-Jeong;Cho, Kye-Man;Shin, Eun-Chule;Lim, Woo-Jin;Hong, Su-Young;Choi, Byoung-Rock;Kang, Jung-Mi;Lee, Sun-Mi;Kim, Yong-Hee;Kim, Hoon;Yun, Han-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.92-101
    • /
    • 2006
  • The bacterial diversity of the bovine rumen was examined using a PCR-based approach. 16S rDNA sequences were amplified and cloned from three fractions of rumen (solid, fluid, and epithelium) that are likely to represent different bacterial niches. A total of 113 clones were sequenced, and similarities to known l6S rDNA sequences were examined. About $47.8\%$ of the sequences had $90-97\%$ similarity to 16S rDNA database sequences. Furthermore, about $62.2\%$ of the sequences were $98-100\%$ similar to 16S rDNA database sequences. For the remaining $6.1\%$, the similarity was less than $90\%$. Phylogenetic analysis was also used to infer the makeup of the bacterial communities in the different rumen fractions. The Cytophaga-Flexibacter-Bacteroides group (CFB, $67.5\%$), low G+C Gram-positive bacteria (LGCGPB, $30\%$), and Proteobacteria $(2.5\%)$ were represented in the rumen fluid clone set; LGCGPB $(75.7\%)$, CFB$(10.8\%)$, Proteobacteria $(5.4\%)$, high G+C Gram-positive bacteria (HGCGPB, $5.4\%$), and Spirochaetes $(2.7\%)$ were represented in the rumen solid clone set; and the CFB group $(94.4\%)$ and LGCGPB $(5.6\%)$ were represented in the rumen epithelium clone set. These findings suggest that the rumen fluid, solid, and epithelium support different microbial populations that may play specific roles in rumen function.

Bacterial Community Structure and Diversity of the Zoysia japonica Soil Treated with Liquid Fertilizer Containing Amino Acids (아미노산 액비를 처리한 들잔디 토양 미생물 군집구조 및 다양성)

  • Kim Dong-Il;Kim Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.103-110
    • /
    • 2006
  • T-RFLP analysis and clone sequencing analysis based on bacterial 16S rDNA were conducted to assess bacterial community structure and diversity in Zoysia japonica soil treated with liquid fertilizer containing amino acids(LFcAA) after spray with herbicide. The results of T-RFLP (terminal restriction fragment length poly-morphism) analysis using restriction enzyme Hae III showed that the T-RFs of various size appeared evenly in the 32 clones of KD3 and 38 clones of KD4 respectively that had been treated with liquid fertilizer containing amino acid(LFcAA) compared to 23 clones of KD2 hat had not been treated with LFcAA. The microbial com- munity structure in KD2 appeared less diverse than those in KD3 and KD4. Analysis of partial sequences for 110 clones from KDI (control), KD2 (non-treated), KD3 (LFcAA 1X), KD4 (LFcAA 2X), respectively, revealed that most bacteria were related with uncultured bacteria in a 16S rDNA sequence similarity range of 91-99% through blast search. Otherwise, the other clones were members of proteobacteria, Acidobacteria, Act-inobacteria, Sphingobacteria and Planctomyces groups. Especially in KD4, members of Alpha Proteobacteria, Rhizobiales, Sphigomonadales, Caulobacterales, Gamma Proteobacteria, the genus Pseudomonas, Betapro-teobacteria, Nitrosomonadales and genus Nitrosospira appeared to be dominant. In addition, Acidobacteria group, Actinobacteria group, Planctomycetacia and Sphingobacteria were also shown. The microbial com-munity structure in Z. japonica soil sprayed with herbicide was affected by LFcAA.

Diversity and Succession of the Bacterial Community during the Initial Fermentation Period in Modernized Soy Sauce (Ganjang) (개량식 간장의 발효 초기 단계에서의 미생물 다양성 및 천이에 관한 연구)

  • Ho Jin Jeong;Gwangsu Ha;Jungmi Lee;Yeji Song;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.481-489
    • /
    • 2023
  • The taste and quality of soy sauce, a fermented liquid condiment, is greatly influenced by microbial metabolism during fermentation. To investigate the microbiological characteristics of ganjang during the initial fermentation process, we prepared meju (fermented soybean) blocks fermented with starter cultures and solar salts and analyzed the microbial community quantitively using 16S rRNA gene profiling from ganjang that had been fermented over a five-week period. The ganjang samples were collected and analyzed after soaking for week one (1W), three (3W), and five (5W) weeks. We found that Halomonadaceae was significantly higher in the 1W group (89.83%) than the 3W and 5W groups (14.46%, and 13.78%, respectively). At a species level, Chromohalobacter beijerinckii and Chromohalobacter canadensis were the dominant species in the 1W group but several taxa such as Bacillus subtilis, Pediococcus acidilactici, and Enterococcus faecalis were more abundant in the 3W and 5W groups. Pearson correlation analysis of the relative abundance of the bacteria showed a negative correlation between Chromohalobacter and two bacterial genera Bacillus and Enterococcus. Beta-diversity showed a statistical distinction between the 1W and the 3W and 5W groups, while no significance was evident between the 3W and 5W groups. Linear discriminant effect size analysis was used to identify biomarkers and significant differences in the relative abundance of several halophilic bacteria, Bacillus sp. and lactic acid bacteria at 1W, 3W, and 5W, recpectively, which indicates the important role of the bacterial community at these time points.

Microbial Diversity inside Ancient Tombs and Burial Accessories from Gaya Age (가야시대 고분 및 부장품 내에 존재하는 미생물의 다양성 조사)

  • Ha, Byeong-Seok;Ko, Seon-Cheol;Jo, A-Reum;Kim, Seung-Rack;Kim, Sang-Woo;Ro, Hyeon-Su
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.67-73
    • /
    • 2013
  • Microbial diversity of soil samples from ancient stone-lined tombs was investigated. The tombs, discovered at Eoryung Ocheon-Ri site, Korea, were estimated to be belonged to middle class people from an ancient country, Gaya, which existed till AD 559 at the southern part of Korea. Nine fungal stains and 70 bacterial strains were isolated from the twelve soil samples, which were collected from the tomb Nos. 5 and 6. Ribosomal DNA sequence analysis discovered 5 fungal and 22 bacterial strains belonged to 10 genus groups from the tomb No. 5 while 1 fungal and 28 bacterial strains belonged to 6 genus from the tomb No. 6. The higher microbial diversity suggests that the tomb No. 5 was constructed warmer season than the tomb No. 6. Moreover, the discovery of Staphylococcus warneri, which is found as part of the skin flora on human and animals, and Bacillus aquimaris, which is a marine bacterium and can be discovered from tidal flat, from the surface of large dagger suggests that the ancient people may use meat and seafood at the burial ceremony.

Seasonal Variation of Bacterial Community in the Seawater of Gwangyang Bay Estimated by Amplified Ribosomal DNA Restriction Analysis (Amplified Ribosomal DNA Restriction Analysis를 이용한 광양만 해수의 세균 군집의 계절적 변화)

  • Ramos, Sonny Cachero;Hwang, Yeoung Min;Lee, Ji Hee;Baik, Keun Sik;Seong, Chi Nam
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.770-778
    • /
    • 2013
  • To determine the seasonal variation of bacterial community in the seawater of Gwangyang Bay, three hundred thirty six bacterial strains were isolated on February, May, July and October 2011. Amplified Ribosomal DNA Restriction Analysis (ARDRA) was used to construct the phylotyes of the isolates using the restriction endonuclease, Hae III. Diversity indices of ARDRA patterns were calculated. One hundred and one phylotypes including 40 unique pylotypes were found at the 80% similarity level. Partial 16S rRNA genes of one hundred thirty nine strains representing each phylotypes were sequenced and compared. Bacterial community composed of 4 different phyla which include Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes. Proteobacteria was the prevailing phylum in all seasons, followed by Bacteroidetes in winter, spring and autumn while Actinobacteria in summer. At the family level, Flavobacteriaceae dominated in winter and spring and Pseudoalteromonadaceae did in summer and autumn. Genera Altererythrobacter, Loktanella, Pseudoalteromonas and Vibrio were encountered in all seasons. The most diverse bacterial community was found in autumn followed by the order of spring, winter and summer.