• Title/Summary/Keyword: Bacterial apoptosis-like death

Search Result 8, Processing Time 0.025 seconds

Programmed Cell Death in Bacterial Community: Mechanisms of Action, Causes and Consequences

  • Lee, Heejeong;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1014-1021
    • /
    • 2019
  • In the bacterial community, unicellular organisms act together as a multicellular being. Bacteria interact within the community and programmed cell death (PCD) in prokaryotes is a sort of altruistic action that enables the whole population to thrive. Genetically, encoded cell death pathways are triggered by DNA damage or nutrient starvation. Given the environmental and bacterial diversity, different PCD mechanisms are operated. Still, their biochemical and physiological aspects remain unrevealed. There are three main pathways; thymineless death, apoptosis-like death, and toxin-antitoxin systems. The discovery of PCD in bacteria has revealed the possibility of developing new antibiotics. In this review, the molecular and physiological characteristics of the three types of PCD and their development potential as antibacterial agents are addressed.

Reactive Oxygen Species Depletion by Silibinin Stimulates Apoptosis-Like Death in Escherichia coli

  • Lee, Bin;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2129-2140
    • /
    • 2017
  • Silibinin is the major active component of silymarin, extracted from the medicinal plant Silybum marianum. Silibinin has potent antibacterial activity; however, the exact mechanism underlying its activity has not been elucidated. Here, we investigated the novel mechanism of silibinin against Escherichia coli. Time-kill kinetic assay showed that silibinin possess a bactericidal effect at minimal inhibitory concentration (MIC) and higher concentrations (2-and 4-fold MIC). At the membrane, depolarization and increased intracellular $Ca^{2+}$ levels were observed, considered as characteristics of bacterial apoptosis. Additionally, cells treated with MIC and higher concentrations showed apoptotic features like DNA fragmentation, phosphatidylserine exposure, and caspase-like protein expression. Generally, apoptotic death is closely related with ROS generation; however, silibinin did not induce ROS generation but acted as a scavenger of intracellular ROS. These results indicate that silibinin dose-dependently induces bacterial apoptosis-like death, which was affected by ROS depletion, suggesting that silibinin is a potential candidate for controlling bacteria.

Bacterial Apoptosis-Like Death through Accumulation of Reactive Oxygen Species by Quercetin in Escherichia coli

  • Min Seok Kwun;Dong Gun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1395-1400
    • /
    • 2024
  • The antimicrobial activity of the natural compounds from plant and food have well discovered since the interest on the beneficial effect of the natural compounds was risen. Quercetin, a flavonoid derived from vegetables, including onions, red leaf lettuces and cherries has been studied for diverse biological characteristics as anti-cancer and anti-microbial activities. The aim of current study is to investigate the specific antibacterial modes of action of quercetin against Escherichia coli. Quercetin decreased the E. coli cell viability and induced the severe damages (oxidative stress, DNA fragmentation) leading to cell death. Reactive oxygen species (ROS) generation was observed during the process, which we confirmed that oxidative stress was the key action of antibacterial activity of quercetin exerting its influence potently. Based on the results of Annexin V and Caspace FITC-VAD-FMK assay, the oxidative damage in E. coli has led to the bacterial apoptosis-like death in E. coli. To sum up, the contribution of ROS generation exerts crucial impact in antibacterial activity of quercetin.

Effects of Peppermint Oil on Apoptosis of Astrocytes (신경교(神經膠) 성상세포(星狀細胞)의 세포자감사(細胞自減死)에 있어서 박하오일의 효과(效果))

  • Lee Sung-Ryull;Kim Tae-Hun
    • Journal of Oriental Neuropsychiatry
    • /
    • v.10 no.2
    • /
    • pp.47-57
    • /
    • 1999
  • Recently, essential oils are used for aromatherapy. Most essential oils are said to be anti-bacterial; some may be anti-viral or anti-fungal. I investigated the effects of peppermint pure essential oil on the heat shock-induced apoptosis in human astrocyte cell line CCF-STTGI. In previous studies, heat shock has been reported to induce the apoptosis or programmed cell death through the activation of caspase-3. We studied the heat shock-induced apoptosis through flow cytometry, DNA electrophoresis, and giemsa staining. Interestingly, these events were inhibited by pretreatment of peppermint pure essential oils in CCF-STTGl cells. Peppermint oil also inhibited the heat shock-induced apoptosis in primary cultured rat astrocytes. In addition, this Peppermint essential oil inhibited the heat shock-induced activation of caspase-3. These results suggest that peppermint pure essential oils may modulate the apoptosis through the activation of the interleukin-I -converting enzyme-like protease.

  • PDF

Periplanetasin-2 Enhances the Antibacterial Properties of Vancomycin or Chloramphenicol in Escherichia coli

  • Lee, Heejeong;Hwang, Jae Sam;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.189-196
    • /
    • 2021
  • Periplanetasin-2 from cockroach exhibits broad-spectrum antimicrobial activity. The underlying antibacterial mechanisms rely on the stimulation of reactive oxygen species overproduction to induce apoptotic cell death. A promising strategy to increase the bioavailability of periplanetasin-2 involves reducing the dose through combination therapy with other antibacterials that show synergistic effects. Thus, the synergistic antibacterial activity of periplanetasin-2 with conventional antibacterial agents and its mechanisms was examined against Escherichia coli in this study. Among the agents tested, the combinations of periplanetasin-2 with vancomycin and chloramphenicol exhibited synergistic effects. Periplanetasin-2 in combination with vancomycin and chloramphenicol demonstrated antibacterial activity through the intracellular oxidative stress response. The combination with vancomycin resulted in the enhancement of bacterial apoptosis-like death, whereas the combination with chloramphenicol enhanced oxidative stress damage. These synergistic interactions of periplanetasin-2 can help broaden the spectrum of conventional antibiotics. The combination of antimicrobial peptides and conventional antibiotics is proposed as a novel perspective on treatments to combat severe bacterial infection.

In vivo anti-metastatic action of Ginseng Saponins is based on their intestinal bacterial metabolites after oral administration

  • Saiki, Ikuo
    • Journal of Ginseng Research
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • We found that the main bacterial metabolite M1 is an active component of orally administered protopanxadiol-type ginsenosides, and that the anti-metastatic effect by oral administration of ginsenosides may be primarily mediated through the inhibition of tumor invasion, migration and growth of tumor cells by their metabolite M1. Pharmacokinetic study after oral administration of ginsenoside Rb1 revealed that M1 was detected in serum for 24 h by HPLC analysis but Rb1 was not detected. M1, with anti-metastatic property, inhibited the proliferation of murine and human tumor cells in a time- and concentration-dependent manner in vitro, and also induced apoptotic cell death (the ladder fragmentation of the extracted DNA). The induction of apoptosis by M1 involved the up-regulation of the cyclin-dependent kinase(CDK) inhibitor $p27^{Kip1}$ as well as the down-regulation of a proto-oncogene product c-Myc and cyclin D1 in a time-dependent manner. Thus, M1 might cause the cell-cycle arrest (G1 phase arrest) in honor cells through the up/down-regulation of these cell-growth related molecules, and consequently induce apoptosis. The nucleosomal distribution of fluorescence-labeled M1 suggests that the modification of these molecules is induced by transcriptional regulation. Tumor-induced angiogenesis (neovascularization) is one of the most important events concerning tumor growth and metastasis. Neovascularization toward and into tumor is a crucial step for the delivery of nutrition and oxygen to tumors, and also functions as the metastatic pathway to distant organs. M1 inhibited the tube-like formation of hepatic sinusoidal endothelial (HSE) cells induced by the conditioned medium of colon 26-L5 cells in a concentration-dependent manner. However, M1 at the concentrations used in this study did not affect the growth of HSE cells in vitro.

Salmonella Promotes ASC Oligomerization-dependent Caspase-1 Activation

  • Hwang, Inhwa;Park, Sangjun;Hong, Sujeong;Kim, Eun-Hee;Yu, Je-Wook
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.284-290
    • /
    • 2012
  • Innate immune cells sense and respond to the cytoplasmic infection of bacterial pathogens through NLRP3, NLRC4 or AIM2 inflammasome depending on the unique molecular pattern of invading pathogens. The infection of flagellin- or type III secretion system (T3SS)-containing Gram-negative bacteria such as Salmonella enterica serovar Typhimurium (S. typhimurium) or Pseudomonas aeruginosa (P. aeruginosa) triggers NLRC4-dependent caspase-1 activation leading to the secretion of proinflammatory cytokines such as interleukin-1-beta (IL-$1{\beta}$) and IL-18. Previous studies have shown that apoptosis-associated speck-like protein containing a CARD (ASC) is also required for Salmonella-induced caspase-1 activation, but it is still unclear how ASC contributes to the activation of NLRC4 inflammasome in response to S. typhimurium infection. In this study, we demonstrate that S. typhimurium triggers the formation of ASC oligomer in a potassium depletion-independent manner as determined by in vitro crosslinking and in situ fluorescence imaging. Remarkably, inhibition of potassium efflux failed to block Salmonella-promoted caspase-1 activation and macrophage cell death. These results collectively suggest that ASC is substantially oligomerized to facilitate the activation of caspase-1 in response to S. typhimurium infection. Contrary to NLRP3 inflammasome, intracellular potassium depletion is not critical for NLRC4 inflammasome signaling by S. typhimurium.

Characterization of HtrA2-deficient Mouse Embryonic Fibroblast Cells Based on Morphology and Analysis of their Sensitivity in Response to Cell Death Stimuli. (HtrA2 유전자가 결손된 mouse embryonic fibroblast 세포주의 형태학적 특징 및 세포사멸 자극에 대한 감수성 조사)

  • Lee, Sang-Kyu;Nam, Min-Kyung;Kim, Goo-Young;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.522-529
    • /
    • 2008
  • High-temperature requirement A2(HtrA2) has been known as a human homologue of bacterial HtrA that has a molecular chaperone function. HtrA2 is mitochondrial serine protease that plays a significant role in regulating the apoptosis; however, the physiological function of HtrA2 still remains elusive. To establish experimental system for the investigation of new insights into the function of HtrA2 in mammalian cells, we first obtained $HtrA2^{+/+}$ and $HtrA2^{-/-}$ MEF cells lines and identified those cells based on the expression pattern and subcellular localization of HtrA2, using immunoblot and biochemical assays. Additionally, we observed that the morphological characteristics of $HtrA2^{-/-}$ MEF cells are different form those of $HtrA2^{+/+}$ MEF cells, showing a rounded shape instead of a typical fibroblast-like shape. Growth rate of $HtrA2^{-/-}$ MEF cells was also 1.4-fold higher than that of $HtrA2^{+/+}$ MEF cells at 36 hours. Furthermore, we verified both MEF cell lines induced caspsase-dependent cell death in response to apoptotic stimuli such as heat shock, staurosporine, and rotenone. The relationship between HtrA2 and heat shock-induced cell death is the first demonstration of the research field of HtrA2. Our study suggests that those MEF cell lines are suitable reagents to further investigate the molecular mechanism by which HtrA2 regulates the balance between cell death and survival.