DOI QR코드

DOI QR Code

In vivo anti-metastatic action of Ginseng Saponins is based on their intestinal bacterial metabolites after oral administration

  • Saiki, Ikuo (Division of Pathogenic Biochemistry, Institute of Natural Medicne, University of Toyama)
  • Published : 2007.03.31

Abstract

We found that the main bacterial metabolite M1 is an active component of orally administered protopanxadiol-type ginsenosides, and that the anti-metastatic effect by oral administration of ginsenosides may be primarily mediated through the inhibition of tumor invasion, migration and growth of tumor cells by their metabolite M1. Pharmacokinetic study after oral administration of ginsenoside Rb1 revealed that M1 was detected in serum for 24 h by HPLC analysis but Rb1 was not detected. M1, with anti-metastatic property, inhibited the proliferation of murine and human tumor cells in a time- and concentration-dependent manner in vitro, and also induced apoptotic cell death (the ladder fragmentation of the extracted DNA). The induction of apoptosis by M1 involved the up-regulation of the cyclin-dependent kinase(CDK) inhibitor $p27^{Kip1}$ as well as the down-regulation of a proto-oncogene product c-Myc and cyclin D1 in a time-dependent manner. Thus, M1 might cause the cell-cycle arrest (G1 phase arrest) in honor cells through the up/down-regulation of these cell-growth related molecules, and consequently induce apoptosis. The nucleosomal distribution of fluorescence-labeled M1 suggests that the modification of these molecules is induced by transcriptional regulation. Tumor-induced angiogenesis (neovascularization) is one of the most important events concerning tumor growth and metastasis. Neovascularization toward and into tumor is a crucial step for the delivery of nutrition and oxygen to tumors, and also functions as the metastatic pathway to distant organs. M1 inhibited the tube-like formation of hepatic sinusoidal endothelial (HSE) cells induced by the conditioned medium of colon 26-L5 cells in a concentration-dependent manner. However, M1 at the concentrations used in this study did not affect the growth of HSE cells in vitro.

Keywords

References

  1. Sakakibara, K., Shibata, Y., Higashi, T., Sanada, S., and Shoji, J.: Effect of ginseng saponins on cholesterol metabolism. I. The level and the synthesis of serum and liver cholesterol in rats treated with ginsenosides. Chem. Pharm. Bull. 23, 1009-1016 (1975) https://doi.org/10.1248/cpb.23.1009
  2. Shibata, Y., Nozaki, T., Higashi, T., Sanada, S., and Shoji, J.: Stimulation of serum protein synthesis in ginsenoside treated rat. Chem. Pharm. Bull. 24, 2818-2824 (1976) https://doi.org/10.1248/cpb.24.2818
  3. Toda, S., Kimura, M., and Ohnishi, M.: Induction of neutrophil accumulation by red ginseng. J. Ethnopharma. 30, 315-318 (1990) https://doi.org/10.1016/0378-8741(90)90110-F
  4. Scaglione, F., Ferrara, F., Dugnani, S., Falchi, M., Santoro, G., and Fraschini, F.: Immunomodulatory effects of two extracts of Panax ginseng C. A. Meyer. Drug Exp. Clin. Res. 16, 537-542 (1990)
  5. Wu, J. Y., Gardner, B. H., Murphy, C. I., Seals, J. R., Kensil, C. R., Recchia, J., Beltz, G. A., Newman, G. W., and Newman, M. J.: Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine. J. Immunol. 148, 1519-1525 (1992)
  6. Sato, K., Mochizuki, M., Saiki, I., Yoo, Y. C., Samukawa, K., and Azuma, I.: Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. Biol. Pharm. Bull. 17, 635-639 (1994) https://doi.org/10.1248/bpb.17.635
  7. Mochizuki, M., Yoo, Y. C., Matsuzawa, K., Sato, K., Saiki, I., Tono-oka, S., Samukawa, K., and Azuma, I.: Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20(R)- and 20(S)-ginsenoside-Rg3, of Red ginseng. Biol. Pharm. Bull. 18, 1197-1202 (1995) https://doi.org/10.1248/bpb.18.1197
  8. Shinkai, K., Akedo, H., Mukai, M., Imamura, F., Isoai, A., Kobayashi, M., and Kitagawa, I.: Inhibition of in vivo tumor cell Invasion by ginsenoside Rg3. Jpn. J. Cancer Res. 87, 357-362 (1996) https://doi.org/10.1111/j.1349-7006.1996.tb00230.x
  9. Odashima, S., Ohta, T., Kohno, H., Matsuda, T., Kitagawa, I., Abe, H., and Arichi, S.: Control of phenotypic expression of cultured B16 melanoma cells by plant glycosides. Cancer Res. 45, 2781-2784 (1985)
  10. Ota, T., Fujikawa-yamamoto, K., Zong, Z. P., Yamazaki, M., Odashima, S., Kitagawa, I., Abe, H., and Arichi, S.: Plant-glycoside modulation of cell surface related to control of differentiation in cultured B16 melanoma cells. Cancer Res. 47, 3863-3867 (1987)
  11. Hasegawa, H., Sung, J., Matsumiya, S., and Uchiyama, M.: Main ginseng saponin metabolites formed by intestinal bacteria. Planta Medica, 62, 453-457 (1996) https://doi.org/10.1055/s-2006-957938
  12. Kanaoka, M., Akao, T., and Kobashi, K.: Metabolism of ginseng saponins, ginsenosides, by human intestinal flora. J. Traditional Med. 11, 241-245 (1994)
  13. Karikuma, M., Miyase, T., Tanizawa, H., Taniyama, T., and Takino, Y.: Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VII. Comparison of the decomposition modes of ginsenoside-Rb1 and -Rb2 in the digestive tract of rats. Chem. Pharm. Bull, 39, 2357-2361 (1991) https://doi.org/10.1248/cpb.39.2357
  14. Wakabayashi, C., Hasegawa, H., Murata, J., and Saiki, I.: In vivo anti-metastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res., 9, 411-417 (1997a)
  15. Wakabayashi, C., Hasegawa, H., Murata, J., and Saiki, I.: The expression of in vivo anti-metastatic effect of ginseng protopanaxatriol saponins is mediated by their intestinal bacterial metabolites after oral administration. J. Traditional. Med., 14, 180-185 (1997b)
  16. Odani, T., Tanizawa, H., and Takino, Y.: Studies on absorption, distribution, excretion and metabolism of ginseng saponins. III. The absorption, distribution and excretion of ginsenoside Rb1 in the rat. Chem. Pharm. Bull., 31, 1059-1066 (1983) https://doi.org/10.1248/cpb.31.1059
  17. Tanizawa, H., Karikuma, M., Miyase, T., and Takino, Y.: Studies on the metabolism and/or decomposition and distribution of ginsenoside Rb2 in rats. Proc. 6th Int. Ginseng Symp., pp. 187-194, Seoul (1993)
  18. Wakabayashi, C., Murakami, K., Hasegawa, H., Murata, J., and Saiki, I.: An intestinal bacterial metabolite of ginseng protopanaxadiol saponin has the ability to induce apoptosis in tumor cells. Biochem. Biophys. Res. Commun., 246, 725-730 (1998) https://doi.org/10.1006/bbrc.1998.8690
  19. Fukumoto, S., Nishizawa, Y., Hosoi, M., Koyama, H., Yamakawa, K., Ohno, S. and Morii, H.: Protein kinase C delta inhibits the proliferation of vascular smooth muscle cells by suppressing G1 cyclin expression. J. Biol. Chem. 272, 13816-13822 (1997) https://doi.org/10.1074/jbc.272.21.13816
  20. Rogatsky, I., Trowbridge, J. M. and Garabedian, M. J.: Glucocorticoid receptor-mediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanism. Mol. Cell. Biol. 17, 3181-3193 (1997) https://doi.org/10.1128/MCB.17.6.3181
  21. Vlach, J., Hennecke, S., Alevizopoulos, K., Cinti, D. and Amati, B.: Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-myc. EMBO Journal 15, 6595-6604 (1996)
  22. Story, M. and Kodym, R.: Signal transduction during apoptosis; implications for cancer therapy. Front. Biosci., 3, 365-375 (1998) https://doi.org/10.2741/A281
  23. White, E.: Life, death, and the pursuit of apoptosis. Genes Dev. 10, 1-15 (1996) https://doi.org/10.1101/gad.10.1.1
  24. Vaux, D.L. and Strasser A.: The molecular biology of apoptosis. Proc. Natl. Acad. Sci. 93, 2239-2244 (1996)
  25. Evan, G.I., Brown, L., Whyte, M. and Harrington, E.: Apoptosis and the cell cycle. Curr. Opin. Cell Biol. 7, 825-834 (1995) https://doi.org/10.1016/0955-0674(95)80066-2
  26. Schuchard, M., Landers, J. P., Sandhu, N. P. and Spelsberg, T. C.: Steroid hormone regulation of nuclear proto-oncogenes. Endocr. Rev., 14, 659-669 (1993) https://doi.org/10.1210/er.14.6.659
  27. Folkman, J. and Cotran, R.: Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Pathol. 16, 207-248 (1976)
  28. Folkman, J.: How is blood vessel growth regulated in normal and neoplastic tissue? G. H. A. Clowes memorial award lecture. Cancer Res. 46, 467-473 (1986)
  29. Folkman, J. and Sing, Y.: Angigenesis. J. Biol. Chem. 267, 10931-10934 (1992)
  30. Battegay, E. J., Rupp, J., Iruela-Arispe, L., Sage, E. H. and Pech, M.: PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J. Cell. Biol. 125, 917-928 (1994) https://doi.org/10.1083/jcb.125.4.917
  31. Warren, R. S., Yuan, H., Matli, M. R., Gillett, N. A. and Ferrara, N.: Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J. Clin. Invest. 95, 1789-1797 (1995) https://doi.org/10.1172/JCI117857
  32. Esch, F., Baird, A., Ling, N., Ueno, N., Hill, F., Denoroy, L., Klepper, R., Gospodarowicz,D., Bohlen, P. and Guillemin, R.: Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc. Natl. Acad. Sci. U. S. A. 82, 6507-6511 (1985)
  33. O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Coa, Y., Sage, E. H. and Folkman, J.: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma [see comments]. Cell 79, 315-328 (1994) https://doi.org/10.1016/0092-8674(94)90200-3
  34. Weinstat-Saslow, D. L., Zabrenetzky, V. S., Vanhoutte, K., Frazier, W. A., Roberts, D. D. and Steeg, P. S.: Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res. 54, 6504-6511 (1994)
  35. Kolber, D. A., Knisely, T. L. and Maione, T. E.: Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. J. Natl. Cancer Inst. 87, 304-309 (1995) https://doi.org/10.1093/jnci/87.4.304
  36. O'Reilly, M. S., Boehm, T., Shing, Y., Futai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R. and Folkman, J.: Endostatin : an endogenous inhibitor of anigiogenesis and tumor growth. Cell 88, 277-285 (1997) https://doi.org/10.1016/S0092-8674(00)81848-6
  37. Dinney, C. P., Bielenberg, D. R., Perrotte, P., Reich, R., Eve, B. Y., Bucana,C. D. and Fidler, I. J.: Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Res. 58, 808-814 (1998)
  38. Xie, K. and Fidler, I. J.: Therapy of cancer metastasis by activation of the inducible nitric oxide synthase. Cancer Metastasis Rev. 17, 55-75 (1998) https://doi.org/10.1023/A:1005956721457
  39. Tanigawa, N., Lu, C., Mitsui, T. and Miura, S.: Quantitation of sinusoid-like vessels in hepatocellular carcinoma: its clinical and prognostic signification. Hepatology 26, 1216-1223 (1997)
  40. Murakami, K., Sakukawa R., Sano, M., Hashimoto, A., Shibata, J., Yamada, Y. and Saiki, I.: Inhibition of angiogenesis and intrahepatic growth of colon cancer by TAC-101. Clin. Cancer Res. 5, 2304-2310 (1999)
  41. Kawaguchi, K., Kuhlenschmidt, M., Roseman, S. and Lee, Y. C.: Differential uptake of D-galactosyl- and D-glucosyl-neoglycoproteins by isolated rat hepatocytes. J. Biol. Chem. 256, 2230-2234 (1981)
  42. Shimizu, K., Maitani, Y., Takahashi, N., Takayama, K. and Nagai, T.: Association of liposomes containing a soybean-derived sterylglucoside mixture with rat primary cultured hepatocytes. Biol. Pharm. Bull. 21, 818-822 (1998) https://doi.org/10.1248/bpb.21.818

Cited by

  1. Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites vol.2016, pp.1741-4288, 2016, https://doi.org/10.1155/2016/5738694
  2. The Inhibitory Effect of Protopanoxadiol and Compound K on Hepatocellular Carcinoma and the Underlying Mechanisms vol.06, pp.02, 2017, https://doi.org/10.12677/TCM.2017.62018